Electronic Supplementary Information

Integrating Metallic Nanoparticles of Au and Pt with MoS₂–CdS

Hybrids for High-Efficient Photocatalytic Hydrogen Generation via

Plasmon-Induced Electron and Energy Transfer

Kai Chen,^{‡a,b} Liang Ma,^{‡a} Jia-Hong Wang,^{‡a} Zi-Qiang Cheng,^a Da-Jie Yang,^{a,b} Ying-Ying Li,^a Si-Jing Ding,^{*a} Li Zhou^{*a} and Qu-Quan Wang^{*a,b}

^aKey Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education,

School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.

^bThe Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China.

*Email: qqwang@whu.edu.cn (Q.-Q. Wang); zhouli@whu.edu.cn (L. Zhou);

sjding@whu.edu.cn (S.-J. Ding).

Figure S1. TEM images of MoS_2/Au (a) and MoS_2/Pt (b) hybrids.

Figure S2. EDX spectra of (MoS₂–CdS)/Au (a) and Pt/MoS₂–CdS/Au (b) hybrids and the contents ratio

of the Pt, MoS2 and Au is about Pt: MoS2: Au = 2: 1: 17 .

Figure S3. XRD pattern of (MoS₂–CdS)/Au hybrids.

Figure S4. Extinction spectra of the as-synthesized samples of monolayer MoS₂ nanosheets, MoS₂/Au

and MoS₂/Pt hybrids.

Figure S5. Extinction spectra of (MoS₂-CdS)/Au hybrids with different quality percentages of Au.

Figure S6. (a) Time-dependent photocatalytic H_2 evolution for (MoS₂-CdS)/Au hybrids with different quality percentages of Au. (b) Comparison of the H_2 evolution rate under visible light irritation for (MoS₂-CdS)/Au hybrids with different quality percentages of Au.

Figure S7. Photocatalytic activity of the as-synthesized samples for H₂ evolution reaction. Timedependent photocatalytic H₂ evolution for different loading ratio of Pt and Au in the obtained Pt/MoS₂-CdS/Au hybrid structures (a); Comparison of the average H₂ evolution rate in 3 hours under visible light irritation for different loading ratio of Pt and Au in the obtained Pt/MoS₂-CdS/Au hybrid structures (b).

Figure S8. Photocatalytic activity of the as-synthesized samples for H_2 evolution reaction. Timedependent photocatalytic H_2 evolution for CdS/Au, CdS/Pt, Pt/CdS/Au and Pt/(MoS₂–CdS)/Au heterostructures (a); Comparison of the average H_2 evolution rate in 3 hours under visible light irritation for CdS/Au, CdS/Pt, Pt/CdS/Au and Pt/(MoS₂–CdS)/Au heterostructures (b).

Figure S9. TEM (a) and HRTEM (b) images of Pt/MoS₂-CdS/Au heterostructure.

Figure S10. Extinction spectra (a) and Time-dependent photocatalytic H2 evolution (b) for Pt/MoS₂-CdS/Au heterostructure.

The expression of enhancement factors:

$$\begin{split} EF_{Au} &= \frac{\text{HER}_{\text{rate}}[(MoS_{2}-CdS)/Au]}{\text{HER}_{\text{rate}}[MoS_{2}-CdS]} = \frac{e_{p}\alpha_{CdS}k_{CdS \rightarrow MdS_{2}} + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{2}} + k_{Au \rightarrow MdS_{2}})}{\alpha_{CdS}k_{CdS \rightarrow MdS_{2}}} = e_{p} + EF_{\text{Hot,Sulfide}} \\ &= e_{p} + \frac{\alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{2}} + k_{Au \rightarrow MdS_{2}})}{\alpha_{CdS}k_{CdS \rightarrow MdS_{2}}} = e_{p} + EF_{\text{Hot,Sulfide}} \\ \end{split}$$
where $EF_{\text{Hot,Sulfide}} = \frac{\alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{2}} + k_{Au \rightarrow MdS_{2}})}{\alpha_{CdS}k_{CdS \rightarrow MdS_{2}}} = \frac{e_{p} + EF_{\text{Hot,Sulfide}}}{\alpha_{CdS}k_{CdS \rightarrow MdS_{2}}} \\ \end{array}$

$$EF_{p_{1}} = \frac{\text{HER}_{\text{rate}}[(MoS_{2} - CdS)/Pt]}{\text{HER}_{\text{rate}}[MoS_{2} - CdS]} = \frac{\alpha_{CdS}k_{CdS \rightarrow MdS_{2}} + \alpha_{CdS}(k_{CdS \rightarrow Pt} + k_{CdS \rightarrow MdS_{2}}k_{MdS_{3} \rightarrow Pt})}{\alpha_{CdS}k_{CdS \rightarrow MdS_{3}}} \\ = 1 + \frac{\alpha_{CdS}(k_{CdS \rightarrow Pt} + k_{CdS \rightarrow MdS_{3}}k_{MdS_{3} \rightarrow Pt})}{\alpha_{CdS}k_{CdS \rightarrow MdS_{3}}} \\ EF_{au} = \frac{\text{HER}_{\text{rate}}[Pt(MOS_{2} - CdS] / Pt]}{\text{HER}_{\text{rate}}[MOS_{2} - CdS]} = \frac{\alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}})}{\alpha_{CdS}k_{CdS \rightarrow MdS_{3}}} \\ \\ = \frac{e_{p}\alpha_{CdS}(k_{CdS \rightarrow Pt} + k_{CdS \rightarrow MdS_{3}}k_{MdS_{3} \rightarrow Pt})}{\alpha_{CdS}k_{CdS \rightarrow MdS_{3}}} + \frac{\alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + k_{Au \rightarrow MdS_{3}})(1 + k_{MdS_{3} \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + k_{Au \rightarrow MdS_{3}})(1 + k_{MdS_{3} \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + k_{Au \rightarrow MdS_{3}})(1 + k_{MdS_{3} \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + k_{Au \rightarrow MdS_{3}})(1 + k_{MdS_{3} \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + k_{Au \rightarrow MdS_{3}})(1 + k_{MdS_{3} \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + k_{Au \rightarrow MdS_{3}})(1 + k_{MdS_{3} \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + k_{Au \rightarrow MdS_{3}})(1 + k_{MdS_{3} \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + k_{Au \rightarrow MdS_{3}})(1 + k_{MdS_{3} \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + k_{Au \rightarrow MdS_{3}})(1 + k_{MdS_{3} \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow CdS}k_{CdS \rightarrow MdS_{3}} + k_{Au \rightarrow MdS_{3}})(1 + k_{MdS_{3} \rightarrow Pt}) + \alpha_{Au}(k_{Au \rightarrow Pt}) + \alpha_{A$$