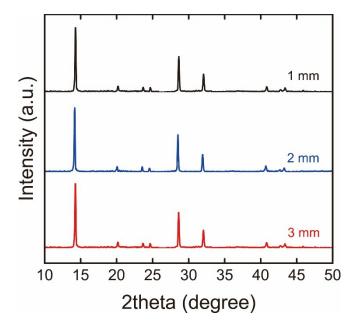
Supporting Information

Perovskite Photodetectors Prepared by Flash Evaporation Printing

Haoming Wei,^{ab} He Ma,^c Meiqian Tai,^b Yang Wei,^{a*} Dongqi Li,^a Xingyue Zhao,^b Hong Lin,^{b*}


Shoushan Fan^{abd} and Kaili Jiang^{ad*}

- ^a State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-
- Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China.
- ^b State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and

Engineering, Tsinghua University, Beijing 100084, China.

- ^c College of Applied Sciences, Beijing University of Technology, Beijing 100124, China.
- ^d Collaborative Innovation Center of Quantum Matter, Beijing 100084, China.
- * Corresponding authors.

E-mail: WeiYang@tsinghua.edu.cn; hong-lin@tsinghua.edu.cn; JiangKL@tsinghua.edu.cn

Fig. S1 XRD patterns of the perovskite thin films evaporated through different distances between the source and the substrate.

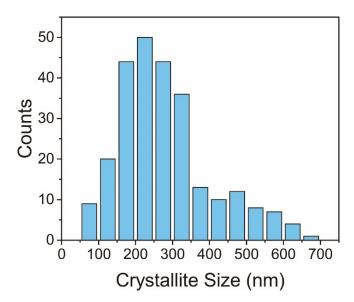
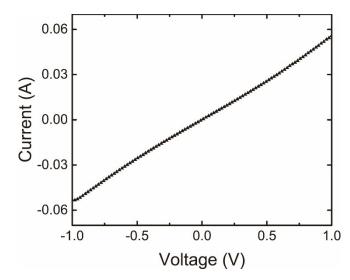



Fig. S2 Crystallite size distribution of the perovskite thin film in Fig. 2a.

Fig. S3 *I-V* characteristics of the FTO/MAPbI₃/Au device for determination of the electrical conductivity.