Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Magnetic ZnFe₂O₄@chitosan encapsulated in graphene oxide for adsorptive removal of organic dye

Xi-Lin Wu, Peiyuan Xiao, Shuxian Zhong, Keming Fang, Hongjun Lin, Jianrong

Chen *

College of Geography and Environmental Science, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, China

Fig.S1. Chemical structure of the Fuchsin basic (BF).

Fig.S2. Pseudo-first-order kinetic (A) and pseudo-second-order kinetic (B) plots for the adsorption of BF (pH 9, temperature: 303 K).

Fig.S3. Intraparticle diffusion model plots for the adsorption of BF (pH 9, temperature: 303 K).

Table S1 Adsorption kinetic parameters of BF onto ZnFe₂O₄@CS/GO.

Pseudo-first-order				Pseudo-second-order			
Initial conc.	K ₁ (min ⁻¹	Q _{e,cal}	R^2	K_2	Q _{e,cal}	Q _e ,exp	\mathbb{R}^2
$C_0 \left(mg^{\bullet}L^{-1}\right)$)	$(mg \bullet g^{-1})$	IX-	$(g \bullet mg^{-1}min^{-1})$	$(mg \bullet g^{-1})$	$(mg \bullet g^{-1})$	
10	0.033	3.79	0.9644	0.011	55.19	54.56	0.9999
25	0.023	5.98	0.9524	0.0023	121.36	118.25	0.9998
50	0.012	8.71	0.9840	0.00042	227.79	216.52	0.9961