## Supporting Information

# Syntheses, characterisation and catalytic role of ( $\left.\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathbf{R h}$ (III) guanidinato complexes in transfer hydrogenation (TH) and TH-etherification 

Robin Kumar, Natesan Thirupathi*

## Table of contents

1 General considerations ..... S2
2 Syntheses and characterization of aryl azides ..... S2
3 Syntheses and characterization of aryl iminophosporanes ..... S4
4 Syntheses and characterization of sym $N, N^{\prime}$-diarylthiourea ..... S6
5 Syntheses and characterization of sym $N, N^{\prime}, N^{\prime \prime}$-triaryguanidines ..... S9
6 Synthesis of complexes 1-8 ..... S12
7 General procedure for transfer hydrogenationa and etherification catalysis ..... S19
8 Syntheses and characterization of $\mathbf{1 7}$ and $\mathbf{1 8}$ ..... S19
9 Characterization data for 1-(isopropoxymethyl)naphthalen-2-ol ..... S20
10 X-ray crystallography ..... S20
11 References ..... S21
12 Figures S1-S47 ..... S23-S67
13 Scheme S1 ..... S68
14 Table S1 ..... S69

## 1. General considerations

Sym $N, N^{\prime}, N^{\prime \prime}$-triarylguanidines, $(\mathrm{ArNH})_{2} \mathrm{C}=\mathrm{NAr}\left(\right.$ Sym $=$ Symmetrical; Ar $=\mathrm{C}_{6} \mathrm{H}_{5}(\mathbf{L 1}) ; 2$ $\mathrm{MeC}_{6} \mathrm{H}_{4}$ (L2); 4-MeC $\mathrm{MH}_{4}$ (L3); 2- $\left.\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{L 4}) ; 4-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{L 5}) ; 2-\mathrm{FC}_{6} \mathrm{H}_{4}(\mathbf{L 6})\right){ }^{1,2} \quad\left[\left(\eta^{5}-\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{MCl}(\mu-\mathrm{Cl})\right]_{2}(\mathrm{M}=\mathrm{Rh}$ and Ir$),{ }^{3} \mathbf{9 , ~}^{4} \mathbf{1 0},{ }^{5} \mathbf{1 1},{ }^{5} \mathbf{1 3}^{6}$ and $(E)$-chalcone ${ }^{7}$ were prepared following the literature procedures. $\mathrm{MCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Rh}$ and Ir$)$, NaOAc , activated basic alumina, silica and substrates used for TH were purchased from commercial vendors and used as received. The IR spectral data were obtained using Nujol or KBr pellet on a Shimadzu IR435 spectrometer in the frequency range $400-4000 \mathrm{~cm}^{-1}$. Time of flight mass (TOF-MS) spectra were recorded on a Agilent Technologies 6530, Accurate-Mass Q-TOF LC/MS instrument using electrospray positive ion mode. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a JEOL ECX 400 NMR spectrometer operating at $400,100.5,376.5$ (with $\mathrm{CF}_{3} \mathrm{COOH}$ as an external standard), 161.8 MHz (with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as an external standard), respectively. The ${ }^{1} \mathrm{H}$ NMR chemical shifts are reported in ppm relative to tetramethylsilane or residual solvent signal. Variable temperature (VT) ${ }^{19} \mathrm{~F}$ NMR for measurements for 3 and VT ${ }^{1} \mathrm{H}$ NMR measurements for 4 were carried out in $\mathrm{CDCl}_{3}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ respectively, on a Bruker AMX 400 MHz NMR spectrometer. Melting points were recorded on a Buchi melting point apparatus (Model: M-560) and the reported values are uncorrected.

Caution: Sodium azide is shock sensitive and explosive, only a small amount of material should be used with care.

## 2. Syntheses and characterization of aryl azides

General Procedure Aryl azides were prepared following the literature procedure ${ }^{8}$ with a slight modification as described below. Trifluoroacetic acid (17 mL) and aniline ( 1 mL ) were added to a 100 mL RB flask containing a stir bar. The RB flask was externally cooled to $-10^{\circ} \mathrm{C}$ with salt-
ice bath, and sodium nitrite ( 2 equiv) was added in small portion over 15 min . The reaction mixture was stirred for 30 min and to it $\mathrm{NaN}_{3}$ (2 equiv) was added in portion over 5 min and stirred for additional 2 h . Subsequently, distilled water ( 20 mL ) was added carefully and the solution was warmed to RT. The reaction mixture was extracted with ethyl acetate ( $3 \times 20 \mathrm{~mL}$ ) and the extract was washed with water ( 20 mL ), saturated aqueous sodium bicarbonate solution ( 20 mL ), and a brine solution ( 20 mL ) in sequence. The organic layer was dried over sodium sulfate, filtered and the filtrate concentrated under vacuum to afford yellow oil.

## 2-(Trifluoromethyl)phenyl azide



Yield: $95 \%$ ( 1.42 g, 7.56 mmol ). IR (Nujol, $\mathrm{cm}^{-1}$ ): 2131 (vs, $\mathrm{N}_{3}$ ), 1605 (m), 1589 (m), 1494 (s), 1458 ( s ), 1322 (vs), 1297 (vs), 1273 ( $\mathrm{sh}, \mathrm{m}$ ), 1178 ( s ), 1134 (vs), 1117 ( sh, s), 1041 (m), 950 (w), 822 (w), 758 (s), 742 (sh, m), $685(\mathrm{~m}), 642(\mathrm{w}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 7.23\left(\mathrm{t}, J_{\mathrm{HH}}\right.$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.30\left(\mathrm{~d}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 7.58\left(\mathrm{t}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.64(\mathrm{~d}$, $\left.J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta 119.6,121.3\left(\mathrm{q}, J_{\mathrm{CF}}=31.4\right.$ $\mathrm{Hz}), 123.1\left(\mathrm{q}, J_{\mathrm{CF}}=272.5 \mathrm{~Hz}\right), 124.6,127.6\left(\mathrm{q}, J_{\mathrm{CF}}=5.1 \mathrm{~Hz}\right), 133.2,138.7 .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 376.5 MHz, ppm): $\delta-61.77$. NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right.$, and $\left.{ }^{19} \mathrm{~F}\right)$ and IR spectral data of the title compound presented herein favorably matched with those known in the literature. ${ }^{9}$

## 4-(Trifluoromethyl)phenyl azide



Yield: $99 \%$ ( $1.48 \mathrm{~g}, 7.88 \mathrm{mmol}$ ). IR (Nujol, $\mathrm{cm}^{-1}$ ): 2134 (s, $\mathrm{N}_{3}$ ), 2111 ( $\mathrm{sh}, \mathrm{w}$ ), 1739 (w), 1544 (w), 1463 (w), 1327 (s), 1169 (s), 1133 (s), 1071 (w), 1018 (w), 759 (w), 637 (w). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 7.12,7.61$ (each d, $\left.J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 2 \times 2 \mathrm{H}, \mathrm{Ar} H\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta 119.3,124.0\left(\mathrm{q}, J_{\mathrm{CF}}=271.6 \mathrm{~Hz}\right), 127.2\left(\mathrm{two} \mathrm{q}, J_{\mathrm{CF}}=32.8\right.$ and 3.5 $\mathrm{Hz})$, 143.9. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta-63.30$. The ${ }^{1} \mathrm{H}$ NMR spectral data of the title compound presented herein favorably matched with that known in literature. ${ }^{10}$

## 3,5-Bis(trifluoromethyl)phenyl azide



Yield: $98 \%\left(1.60 \mathrm{~g}, 6.27 \mathrm{mmol}\right.$; lit. yield $\left.=96 \%^{8}\right)$. IR $\left(\right.$ Nujol, $\left.\mathrm{cm}^{-1}\right): 2118\left(\mathrm{vs}, \mathrm{N}_{3}\right), 1618(\mathrm{w}, \mathrm{br})$, 1466 (m), 1371 (s), 1280 (vs), 1185 (s), 1143 (s), 908 (w), 882 (w), 848 (w), 699 (w), 683 (w).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 7.44(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 376.5 MHz, ppm): $\delta-63.21 .{ }^{1} \mathrm{H}$ data reported herein favorably matched with those reported in the literature. ${ }^{8}$

## 3. Syntheses and characterization of aryl iminophosporanes

General Procedure All aryl iminophosphoranes were prepared from the corresponding aryl azides and $\mathrm{PPh}_{3}$ through Staudinger reaction following the literature procedure ${ }^{8}$ with a slight modification as described below. Aryl azide ( 500 mg ) was dissolved in dry diethyl ether ( 10 mL ) and triphenylphosphine ( 1 equiv) in 20 mL diethyl ether was added drop wise under nitrogen atmosphere and the evolution of $\mathrm{N}_{2}$ gas was observed. The reaction mixture was stirred for 24 h at RT and stored at RT for one day to afford crystals of aryl iminophoshphoranes.

## 2-(Trifluoromethyl)phenyl iminophoshphorane



Yield: $90 \%$ ( $1.01 \mathrm{~g}, 2.40 \mathrm{mmol}$ ). Mp: $129^{\circ} \mathrm{C}$. IR (KBr, cm ${ }^{-1}$ ): 3062 (w), 3035 (sh, w), 2725 (w), 2370 (w), 2346 (w), 1602 (m), 1482 (s), 1457 (s), 1438 (m), 1355 (vs), 1313 (vs), 1300 (s), 1247 (m), 1183 (w), 1159 (m), 1106 (vs), 1062 (m), 1033 (m), 1020 (sh, m), 999 (sh, m), 742 (sh, w), 734 (sh, m), 716 (m), 691 (m), 643 (w), 598 (w), 573 (w), 525 (s), 504 (w). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, $400 \mathrm{MHz}, \mathrm{ppm}): \delta 6.48\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.63\left(\mathrm{t}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right), 6.98\left(\mathrm{t}, J_{\mathrm{HH}}\right.$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.43-7.55(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar} H), 7.76-7.81(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100.5 \mathrm{MHz}, \mathrm{ppm}): \delta 116.0,122.2\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 123.5\left(\mathrm{qd}, J_{\mathrm{CF}}=26.6 \mathrm{~Hz}, J_{\mathrm{CP}}=23.3 \mathrm{~Hz}\right)$, $125.7\left(\mathrm{q}, J_{\mathrm{CF}}=272.5 \mathrm{~Hz}\right), 126.9\left(\mathrm{q}, J_{\mathrm{CF}}=6.4 \mathrm{~Hz}\right), 128.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 130.4,131.4,131.7$, 131.86, 131.89, $132.7\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 150.4 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta-62.10$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 161.8 \mathrm{MHz}, \mathrm{ppm}\right): \delta 2.48 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / z[$ ion $]: 422.1277[\mathrm{M}+\mathrm{H}]^{+}$. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NP}: 422.1285[\mathrm{M}+\mathrm{H}]^{+}$.

## 4-(Trifluoromethyl)phenyl iminophoshphorane



Yield: $93 \%$ ( $1.05 \mathrm{~g}, 2.48 \mathrm{mmol}$ ). Mp: $113{ }^{\circ} \mathrm{C}$. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3056 (w), 2925 (w), 1897 (w), 1736 (w), 1605 (s), 1511 (s), 1482 (w), 1458 (w), 1436 (m), 1353 (s), 1319 (vs), 1274 (sh, m), 1180 (m), 1152 (m), 1104 (vs), 1065 (s), 1014 (s), 998 (m), 834 (m), 788 (w), 752 (sh, m), 716
(s), 694 ( s$), 638$ (w), 594 (m), 542 (m), 529 (s), 500 (m), 448 (w). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$, ppm $): \delta 6.79\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right), 7.23\left(\mathrm{~d}, J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right), 7.44-7.49(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{ArH}), 7.54-7.56(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.72-7.77(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ -60.50. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 161.8 \mathrm{MHz}, \mathrm{ppm}\right): \delta 5.86 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data of the title compound favorably matched with that reported in literature. ${ }^{11} \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ [ion]: 422.1283 $[\mathrm{M}+\mathrm{H}]^{+}$. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NP}: 422.1285[\mathrm{M}+\mathrm{H}]^{+}$.

## 3,5-Bis(trifluoromethyl)phenyl iminophoshphorane



Yield: $95 \%$ ( $0.910 \mathrm{~g}, 1.86 \mathrm{mmol}$ ). Mp: $132{ }^{\circ} \mathrm{C} . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3058$ (w), 1598 (m), 1470 (m), 1441 (m), 1398 (vs), 1298 (s), 1279 (s), 1168 (s), 1120 (s), 1110 (vs), 1053 (s), 1029 (sh, w), 998 (sh, w), 902 (w), 861 (m), 744 (sh, m), 724 (m), $692(\mathrm{~m}), 680(\mathrm{sh}, \mathrm{m}), 566$ (w), 526 (s), 503 (sh, $\mathrm{m}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 7.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.07(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.47-7.52(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{Ar} H), 7.56-7.60(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.71-7.76(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}\right.$, ppm): $\delta-62.97 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 161.8 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ 7.11. MS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ [ion]: $490.1153[\mathrm{M}+\mathrm{H}]^{+}$. Calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F} 6 \mathrm{NP}: 490.1159[\mathrm{M}+\mathrm{H}]^{+}$.
4. Syntheses and characterization of $\operatorname{sym} N, N^{\prime}$-diarylthiourea
$N, N^{\prime}$-bis(2-trifluoromethyl)phenyl thiourea


The title thiourea was prepared from $\mathrm{ArNH}_{2}$ and $\operatorname{ArNCS}\left(\mathrm{Ar}=2-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4}\right)$ following the literature procedure ${ }^{12}$ with a slight modification as described below. 2-Trifluoromethyl aniline (1 $\mathrm{mL}, 7.96 \mathrm{mmol})$ and 2-(trifluoromethyl)phenyl isothiocyanate $(1.2 \mathrm{~mL}, 7.96 \mathrm{mmol})$ were stirred in anhydrous pyridine ( 20 mL ) at $100{ }^{\circ} \mathrm{C}$ for 2 h . Then, the reaction mixture was cooled and pyridine was removed under vacuum to afford yellowish solid which was washed with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford thiourea as a white solid.

Yield: $50 \% ~\left(1.45 \mathrm{~g}, 3.98 \mathrm{mmol}\right.$; Lit. yield: $42 \%{ }^{12}$ ). Mp: $154-155^{\circ} \mathrm{C}\left(\mathrm{Lit} . \mathrm{Mp}: 163-165{ }^{\circ} \mathrm{C}^{11}\right.$ ). IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3382 (m, NH), 3137 (m), 2951 (m), 1604 (m), 1591 (m), 1560 (sh, w), 1534 (vs), 1509 (sh, m), 1458 (m), 1362 (sh, s), 1320 (s), 1278 (s), 1227 (m), 1205 (m), 1171 (s), 1138 (s), 1124 (s), 1110 (s), 1058 (s), 1035 (m), 776 (m), 766 (m), 722 (w), 658 (m), 634 (w), 532 (w), 471 (w). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 7.44\left(\mathrm{t}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right), 7.60-7.75(\mathrm{~m}, 4 \mathrm{H}$ $(\mathrm{Ar} H), 2 \mathrm{H}(\mathrm{N} H)), 7.77\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ $123.3\left(\mathrm{q}, J_{\mathrm{CF}}=273.4 \mathrm{~Hz}\right), 126.3\left(\mathrm{q}, J_{\mathrm{CF}}=30.0 \mathrm{~Hz}\right), 127(\mathrm{br}, \mathrm{m}), 128.1,130.2,133.1,134.7$, $181.5\left(\mathrm{~N}_{2} C=S\right) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta-62.57 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / z$ [ion]: 365.0545 $[\mathrm{M}+\mathrm{H}]^{+}$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{~S}: 365.0547[\mathrm{M}+\mathrm{H}]^{+}$.

## General procedure for syntheses of $N, N^{\prime}$ 'bis(3,5-bis(trifluoromethyl)phenyl) thiourea and

## $N, N^{\prime}$-bis(4-trifluoromethyl)phenyl thiourea

The procedure given below is a slight modification of the literature procedure ${ }^{13}$ published for $N, N^{\prime}-\operatorname{bis}(3,5-b i s($ trifluoromethyl $)$ phenyl) thiourea. To a solution of aniline $(0.5 \mathrm{~mL})$ in 10 mL dry THF in a 50 mL RB flask was added aryl isothiocyanate (1 equiv), and the resulting mixture was heated at $50{ }^{\circ} \mathrm{C}$ for 80 h with constant stirring and cooled. The reaction mixture was concentrated under vacuum to afford a yellowish solid which was washed with cold $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a white solid.

## $N, N^{\prime}$-Bis(4-trifluoromethyl)phenyl thiourea



Yield: $60 \% ~(0.870 \mathrm{~g}, 2.38 \mathrm{mmol}) . \mathrm{Mp}: 167-168{ }^{\circ} \mathrm{C}$ (Lit. Mp: $164-165^{\circ} \mathrm{C}^{12} ; 161-163{ }^{\circ} \mathrm{C}^{14}$ ). IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): 3194 (m, NH), 3143 (m, NH), 3089 (m), 3027 (m), 1617 (m), 1600 (m), 1539 (s), 1411 (m), 1321 ( s), 1255 (m), 1238 (m), 1192 ( s$), 1175$ ( s$), 1121$ ( s$), 1066$ ( s$), 1016$ (m), 839 ( s$),$ 816 (sh, s), 740 (m), 699 (m), 660 (w), 631 (w), 589 (w), 569 (w), 504 (w). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, $400 \mathrm{MHz}, \mathrm{ppm}): \delta 7.54,7.69\left(\right.$ each d, $\left.J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \times 4 \mathrm{H}, \mathrm{ArH}\right), 7.93(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO- $\left.d_{6}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta 123.2,124.4\left(\mathrm{q}, J_{\mathrm{CF}}=271.5 \mathrm{~Hz}\right), 124.5\left(\mathrm{q}, J_{\mathrm{CF}}=31.9\right.$ $\mathrm{Hz}), 125.8,143.2,179.8\left(\mathrm{~N}_{2} \mathrm{C}=\mathrm{S}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta-63.61 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right)$ $m / z$ [ion]: $365.0541[\mathrm{M}+\mathrm{H}]^{+}$. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{~S}: 365.0547[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{~S}$ ( $\mathrm{M}_{\mathrm{w}}: 364.31$ ): C, 49.45; H, 2.77; N, 7.69; S, 8.80. Found: C, 49.47; H, 2.60; N, 7.68; S, 9.17. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data reported herein favorably matched with those reported in the literature. ${ }^{14}$

## $N, N^{\prime}-\operatorname{Bis}(3,5-b i s(t r i f l u o r o m e t h y l) p h e n y l) ~ t h i o u r e a ~$



Yield: $86 \%(1.38 \mathrm{~g}, 2.75 \mathrm{mmol}) . \mathrm{Mp}: 165^{\circ} \mathrm{C}\left(\mathrm{Lit} . \mathrm{Mp}: 172-173{ }^{\circ} \mathrm{C}^{13}\right)$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3210(\mathrm{~m}$, NH), 3052 (m), 2988 (w), 1559 (m), 1467 (m), 1376 (s), 1326 (sh, w), 1289 (s), 1181 (s), 1134 (s), 1006 (w), 930 (m), 891 (m), 713 (m), 702 (m), 685 (m), 620 (w), 593 (w). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, $400 \mathrm{MHz}, \mathrm{ppm}): \delta 7.77$ (s, 2H, $\operatorname{ArH}$ ), $7.90(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar} H), 7.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{N} H) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
(DMSO- $\left.d_{6}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta 117.7,123.2\left(\mathrm{q}, J_{\mathrm{CF}}=272.5 \mathrm{~Hz}\right), 124.1,130.5\left(\mathrm{q}, J_{\mathrm{CF}}=33.2\right.$ $\mathrm{Hz}), 141.3,180.7\left(\mathrm{~N}_{2} C=\mathrm{S}\right) .{ }^{19} \mathrm{~F}$ NMR (DMSO- $\left.d_{6}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta-61.63 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) m / z$ [ion]: $501.0275[\mathrm{M}+\mathrm{H}]+$. Calcd for $\mathrm{C}_{17} \mathrm{H}_{8} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{~S}: 501.0295[\mathrm{M}+\mathrm{H}]+.{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data reported herein favorably matched with those reported in the literature. ${ }^{13}$

## 5. Syntheses and characterisation of $\operatorname{sym} N, N^{\prime}, N^{\prime \prime}$-triarylguanidines

## Guanidine, L7



Guanidine $\mathbf{L} 7$ was prepared following a literature procedure published earlier for guanidine $\mathbf{L 5}{ }^{15}$ with a slight modification as outlined below. sym $N, N^{\prime}$-bis(2-(trifluoromethyl)phenyl)thiourea $(1.025 \mathrm{~g}, 2.814 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{NAr}\left(\mathrm{Ar}=2-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4} ; 1.186 \mathrm{~g}, 2.814 \mathrm{mmol}\right)$ were dispersed in toluene $(50 \mathrm{~mL})$ in a 100 mL RB flask attached to a water condenser capped with $\mathrm{CaCl}_{2}$ guard tube. The heterogeneous mixture in the flask was simultaneously stirred and heated at $100^{\circ} \mathrm{C}$ for 24 h and cooled. The volatiles from the reaction mixture were removed under vacuum to afford a solid. The solid was subjected to column chromatography over activated basic alumina using $n$ hexane as eluent. The volatiles from the first fraction were evaporated under vacuum to afford L7 as light yellow solid. Yield: $60 \%$ ( $0.8295 \mathrm{~g}, 1.688 \mathrm{~mol}$ ). Mp: $86-87{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{9} \mathrm{~N}_{3}\left(\mathrm{M}_{\mathrm{w}}: 491.35\right)$ : C, 53.78; H, 2.87; N, 8.55. Found: C, 53.43; H, 2.92; N, 8.31. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3437(\mathrm{~m}), 3411(\mathrm{~m}) ; v(\mathrm{C}=\mathrm{N}) 1649(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}, \mathrm{str}\right.$, asym $) 1319(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}\right.$, str, sym) $1121(\mathrm{~m}) ; v\left(\mathrm{CF}_{3}\right.$, def, asym) $761(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 6.10(\mathrm{br}$,
$2 \mathrm{H}, \mathrm{NH}), 7.20(\mathrm{br}, 3 \mathrm{H}, \mathrm{Ar} H), 7.55\left(\mathrm{t}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ar} H\right), 7.65\left(\mathrm{~d}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ar} H\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta 122.9$ (br), 124.2 (br), 125.6 (br), 126.8, 133.1, 144.3. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta-61.53 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / z[\mathrm{ion}]: 492.1117[\mathrm{M}+\mathrm{H}]^{+}$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{9} \mathrm{~N}_{3}: 492.1122[\mathrm{M}+\mathrm{H}]^{+}$.

## Guanidine, L8



Guanidine, $\mathbf{L 8}$ was prepared from sym $N, N^{\prime}$-bis(4-(trifluoromethyl)phenyl)thiourea (1.0128 g, $2.7801 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{NAr}\left(\mathrm{Ar}=4-\left(\mathrm{CF}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{4} ; 1.172 \mathrm{~g}, 2.780 \mathrm{mmol}\right)$ by following the procedure analogous to that described previously for the guanidine L7. Guanidine, L8 was eluted in the second fraction during the column chromatography work up on alumina using ethylacetate/n-hexane ( $2 / 98, \mathrm{v} / \mathrm{v}$ ) mixture as eluent. Guanidine $\mathbf{L 8}$ was obtained as a white solid after evaporation of the eluent under vacuum. Yield: $85 \%$ ( $1.161 \mathrm{~g}, 2.363 \mathrm{mmol}$ ). $\mathrm{Mp}: 138{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{9} \mathrm{~N}_{3}$ ( $\mathrm{M}_{\mathrm{w}}$ : 491.35): C, 53.78 ; H, 2.87; N, 8.55. Found: C, 53.75; H, 2.62; N , 8.36. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3430(\mathrm{br}) ; v(\mathrm{C}=\mathrm{N}) 1593(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}\right.$, str, asym) $1315(\mathrm{~s}) ; v$ $\left(\mathrm{CF}_{3}\right.$, str, sym $) 1243(\mathrm{~m}) ; v\left(\mathrm{CF}_{3}\right.$, def, asym) $1107(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}\right.$, def, sym) $835(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 5.98(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}), 7.22\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{ArH}\right), 7.54\left(\mathrm{~d}, J_{\mathrm{HH}}=\right.$ 8.0 Hz, $6 \mathrm{H}, \mathrm{Ar} H) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \operatorname{ppm}\right): \delta 121.0(\mathrm{ArCH}), 124.3\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ $\left.271.2 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 125.7\left(\mathrm{q}, J_{\mathrm{CF}}=32.5 \mathrm{~Hz}, C \mathrm{CF}_{3}\right), 126.9(\mathrm{ArCH}), 144.0(\mathrm{ArC}), 145.1\left(\mathrm{br}, C \mathrm{~N}_{3}\right)$. The $\delta$ values for ArCH and ArC carbons were confirmed by HETCOR NMR. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right.$,
376.5 MHz, ppm): $\delta-61.92$. MS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ [ion]: $492.1109[\mathrm{M}+\mathrm{H}]^{+}$. Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~F}_{9} \mathrm{~N}_{3}$ : $492.1122[\mathrm{M}+\mathrm{H}]^{+}$.

## Guanidine, L9



Guanidine, $\mathbf{L 9}$ was prepared from $\operatorname{sym} N, N^{\prime}$-bis(3,5-bis(trifluoromethyl)phenyl)thiourea (1.008 g, $2.016 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{NAr}\left(\mathrm{Ar}=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} ; 0.9865 \mathrm{~g}, 2.016 \mathrm{mmol}\right)$ by following a procedure analogous to that described previously for L7. Guanidine, L9 was eluted in the second fraction during the column chromatography work up on alumina using ethyl acetate $/ n$-hexane (40/60, v/v) mixture as eluent. Guanidine, $\mathbf{L} 9$ was obtained as a white solid after evaporation of the eluent under vacuum. Yield: $72 \%$ ( $1.009 \mathrm{~g}, 1.451 \mathrm{mmol}$ ). Mp: $141{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{11} \mathrm{~F}_{18} \mathrm{~N}_{3}$ ( $\mathrm{M}_{\mathrm{w}}$ : 695.35): C, 43.18; H, 1.59; N, 6.04. Found: C, 43.18; H, 1.42; N, 6.18. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3420(\mathrm{~m}) ; v(\mathrm{C}=\mathrm{N}) 1671(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}\right.$, str, asym) $1376(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}\right.$, str, sym $)$ $1280(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}\right.$, def, asym) $1132(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}\right.$, def, sym) $888(\mathrm{~m}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, ppm): $\delta 6.35$ (br, 2H, NH), 7.54 (br, $9 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ $117.6(\mathrm{ArCH}), 121.4(\mathrm{ArCH}), 123.0\left(\mathrm{q}, J_{\mathrm{CF}}=273.1 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 133.1\left(\mathrm{q}, J_{\mathrm{CF}}=33.6 \mathrm{~Hz} \mathrm{CCF}_{3}\right)$, 144.1 ( ArC and $C \mathrm{~N}_{3}$ ). The $\delta$ values for $\operatorname{ArCH}$ and $\operatorname{ArC}$ carbons were confirmed by HETCOR NMR. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta-64.69 . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / z[$ ion $]: 696.0722[\mathrm{M}+\mathrm{H}]^{+}$. Calcd for $\mathrm{C}_{25} \mathrm{H}_{12} \mathrm{~F}_{18} \mathrm{~N}_{3}: 696.0744[\mathrm{M}+\mathrm{H}]^{+}$.

## 6. Syntheses of complexes 1-8

Complex 1 To a solution of $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Rh}(\mu-\mathrm{Cl}) \mathrm{Cl}\right]_{2}(50.00 \mathrm{mg}, 0.0809 \mathrm{mmol})$ in methanol ( 10 mL ) was added two equiv of $\mathbf{L} 7(79.50 \mathrm{mg}, 0.1618 \mathrm{mmol})$ and two equiv. of $\mathrm{NaOAc}(13.27 \mathrm{mg}$, 0.1618 mmol ) in a 25 mL RB flask capped with a $\mathrm{CaCl}_{2}$ guard tube and the resulting orange colored solution was stirred at RT for 24 h . The volatiles were removed under vacuum to afford an orange solid and subsequently the solid was dispersed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the insoluble NaCl was filtered off. The filtrate was layered with toluene and stored at ambient temperature over a period of four days to afford $\mathbf{1}$ as orange needle crystals. Yield: $89 \%$ ( $110.7 \mathrm{mg}, 0.1449 \mathrm{mmol}$ ). Mp : $225{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{~F}_{9} \mathrm{ClRh}\left(\mathrm{M}_{\mathrm{w}}: 763.93\right.$ ): C, 50.31 ; H, 3.69; N, 5.50. Found: C, 50.47; H, 3.74; N, 5.51. IR (KBr, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3344(\mathrm{br}, \mathrm{m}) ; v(\mathrm{C}=\mathrm{N}) 1539(\mathrm{~m}) ; v\left(\mathrm{CF}_{3}\right.$, str, asym) $1485(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}, \mathrm{str}, \mathrm{sym}\right) 1084(\mathrm{~m}) ; v\left(\mathrm{CF}_{3}\right.$, def, asym) $828(\mathrm{~m})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 revealed the presence of three isomers hereafter indicated as isomers 1,2 , and 3 in about 0.34:1.00:0.12 ratio respectively, as estimated from the integrals of $\mathrm{CH}_{3}$ protons. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 1.40\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$, isomer 1), $1.54\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$, isomer 2), $1.57(\mathrm{~s}$, $15 \mathrm{H}, \mathrm{CH}_{3}$, isomer 3), $5.84(\mathrm{~s}, 3 \times 1 \mathrm{H}, \mathrm{NH}$, isomers $1-3), 6.65,6.76,6.81\left(\right.$ each $\mathrm{t}, J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 3$ $\times 1 \mathrm{H}, \mathrm{ArH}$, isomers 2, 1 , and 3, respectively), $6.97\left(\mathrm{t}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$, isomer 2), $7.04(\mathrm{t}$, $J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$, isomer 2), $7.09\left(\mathrm{~d}, J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right.$, isomer 2), 7.11-7.14 (m, 4H, $\mathrm{Ar} H$, isomer 1), $7.20\left(\mathrm{t}, J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H\right.$, isomer 1$), 7.23\left(\mathrm{~d}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right.$, isomer 3), $7.27\left(\mathrm{br}, 1 \mathrm{H}, \mathrm{Ar} H\right.$, isomer 3), $7.34\left(\mathrm{dt}, J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 3 \times 2 \mathrm{H}, \mathrm{Ar} H\right.$, isomers $1-3), 7.44\left(\mathrm{dd}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right.$, isomer 2), 7.49-7.57(m,5H, ArH ; isomer 2 $(1 \mathrm{H})$, isomer $3(4 \mathrm{H})$ ), $7.64\left(\mathrm{~d}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right.$, isomer 3$), 7.92\left(\mathrm{~d}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \times 2 \mathrm{H}\right.$, ArH , isomers 1 and 2), $8.46\left(\mathrm{~d}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right.$, isomer 1$)$. The ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{1}$ also revealed the presence of three isomers in about 0.33:1.00:0.13 ratio respectively, as
estimated from the integrals of $\mathrm{CF}_{3}$ fluorine signals. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ $-62.02\left(\mathrm{~s}, 2 \times 3 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomers 1 and 3$),-61.44\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomer 2$),-59.09\left(\mathrm{~s}, 2 \times 3 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomer 2), $-58.83\left(\mathrm{~s}, 2 \times 3 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomer 3), $-57.94\left(\mathrm{~s}, 2 \times 3 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomer 1). $\mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ [ion]: $728.1188[\mathrm{M}-\mathrm{Cl}]^{+}$. Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{~F} 9 \mathrm{ClRh}: 728.1195[\mathrm{M}-\mathrm{Cl}]^{+}$.

Complex 2 Complex 2 was prepared from $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Rh}(\mu-\mathrm{Cl}) \mathrm{Cl}\right]_{2}(50.00 \mathrm{mg}, 0.0809$ mmol), L8 ( $79.50 \mathrm{mg}, 0.1618 \mathrm{mmol}$ ) and $\mathrm{NaOAc}(13.27 \mathrm{mg}, 0.1618 \mathrm{mmol}$ ) following the procedure previously discussed for complex $\mathbf{1}$. Needle shaped crystals suitable for SCXRD were grown from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH over a period of several days at ambient temperature. Yield: $88 \%$ ( $109.5 \mathrm{mg}, 0.1433 \mathrm{mmol}$ ). Mp: $252{ }^{\circ} \mathrm{C}$ (decompn). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{~F}_{9} \mathrm{ClRh} \cdot \mathrm{H}_{2} \mathrm{O}\left(\mathrm{M}_{\mathrm{w}}: 763.93+18.01\right): \mathrm{C}, 49.15 ; \mathrm{H}, 3.87 ; \mathrm{N}, 5.37$. Found: C, 49.52; H, 3.82; N, 5.45. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v(\mathrm{NH}) 3328(\mathrm{~m}) ; v(\mathrm{C}=\mathrm{N}) 1538(\mathrm{~m}) ; v\left(\mathrm{CF}_{3}\right.$, str, asym) $1322(\mathrm{~s}) ;$ $v\left(\mathrm{CF}_{3}\right.$, str, sym $) 1112(\mathrm{~m}) ; v\left(\mathrm{CF}_{3}\right.$, def, asym $) 843(\mathrm{~s})$. The number of solution species of $\mathbf{2}$ is concentration dependent. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}, 1.309 \times 10^{-2} \mathrm{M}\right): \delta 1.64(\mathrm{~s}, 15 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 6.14(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.85\left(\mathrm{~d}, J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right), 7.15(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar} H), 7.38\left(\mathrm{~d}, J_{\mathrm{HH}}=8.0\right.$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{Ar} H)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ revealed the presence of two isomers in about 1:0.7 ratio at $13.09 \times 10^{-2} \mathrm{M}$ concentration as determined from integrals of $\mathrm{CH}_{3}$ protons of the $\mathrm{Cp}^{*}$ ring. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 1.59,1.63$ (each s, $15 \mathrm{H}, \mathrm{CH} H_{3}$, isomers 1 and 2 respectively), $6.18(\mathrm{~s}, 2 \times 1 \mathrm{H}, \mathrm{N} H$, isomers 1 and 2$), 6.85\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right.$, isomer 1), 7.08-7.16 (m, 8H, ArH , isomer $1(2 \mathrm{H})$ and isomer $2(6 \mathrm{H})$ ), 7.22-7.26 (br, $2 \mathrm{H}, \mathrm{ArH}$, isomer 2), $7.37\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}\right.$, isomer 1), $7.48\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \times 4 \mathrm{H}, \mathrm{ArH}\right.$, isomers 1 and 2$)$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum also revealed the presence of two isomers namely, isomer 1 (major) and isomer 2 (minor) and assignments to these isomers are made wherever possible. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}, 13.09 \times 10^{-2} \mathrm{M}\right): \delta 9.39,9.49\left(\mathrm{CH}_{3}\right.$, isomers 1 and 2,
respectively), $92.29,94.33$ (each d, $J_{\mathrm{RhC}}=8.6 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}$, isomers 1 and 2, respectively), 120.28 (isomer 1), 120.76 (br), 122.46 (isomer 2), 122.59, $122.94,123.94$ (isomer 1), $124.02\left(\mathrm{q}, J_{\mathrm{CF}}=\right.$ $271.2 \mathrm{~Hz}, C F_{3}$, isomer 1), $124.49\left(\mathrm{q}, J_{\mathrm{CF}}=271.5 \mathrm{~Hz}, C F_{3}\right.$, isomer 2$), 124.56\left(\mathrm{q}, J_{\mathrm{CF}}=33.9 \mathrm{~Hz}\right.$, $C C_{3}$, isomer 1), $124.70\left(\mathrm{q}, J_{\mathrm{CF}}=32.6 \mathrm{~Hz}, C \mathrm{CF}_{3}\right.$, isomer 2$), 125.03,125.62,125.79,125.82$, $126.07,126.11,126.47$ (br), 126.54 (br), 126.58 (br), 126.62 (br), 128.33, 129.14, 140.98, 147.85, $153.68\left(\mathrm{~d}, J_{\mathrm{RhC}}=3.9 \mathrm{~Hz}, C \mathrm{~N}_{3}\right.$, isomers 1 and 2$) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}\right.$, ppm, $\left.1.309 \times 10^{-2} \mathrm{M}\right): \delta-62.22(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{C} F 3),-61.80\left(\mathrm{~s}, 2 \times 3 \mathrm{~F}, \mathrm{C} F_{3}\right)$. The ${ }^{19} \mathrm{~F}$ NMR spectrum measured at $13.09 \times 10^{-2} \mathrm{M}$ concentration revealed the presence of two isomers in about 1:0.7 ratio as determined from the integrals of $\mathrm{CF}_{3}$ fluorines. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ $-62.31\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomer 2), $-62.17\left(\mathrm{~s}, 3 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomer 1), $-61.89\left(\mathrm{~s}, 2 \times 3 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomer 1), $-61.75\left(\mathrm{~s}, 2 \times 3 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomer 2). $\mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}[\mathrm{ion}]: 728.1191[\mathrm{M}-\mathrm{Cl}]^{+}, 580.9520\left[\left\{\left(\eta^{5}-\right.\right.\right.$ $\left.\mathrm{Cp} *) \mathrm{Rh}(\mu-\mathrm{Cl}) \mathrm{Cl}\}_{2}-\mathrm{Cl}\right]^{+}, 492.1121[\mathbf{L 8 H}]^{+}$. Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{~F} 9 \mathrm{ClRh}: 728.1195[\mathrm{M}-\mathrm{Cl}]^{+}$, $580.9523\left[\left\{\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Rh}(\mu-\mathrm{Cl}) \mathrm{Cl}\right\}_{2}-\mathrm{Cl}\right]^{+}, 492.1122[\mathbf{L 8 H}]^{+}$.

Complex 3 Complex 3 was prepared from $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Rh}(\mu-\mathrm{Cl}) \mathrm{Cl}\right]_{2} \quad(50.00 \mathrm{mg}, 0.0809$ mmol), L9 (112.30 mg, 0.1618 mmol ) and $\mathrm{NaOAc}(13.30 \mathrm{mg}, 0.1618 \mathrm{mmol})$ following the procedure previously described for complex $\mathbf{1}$. Needle shaped crystals suitable for SCXRD were obtained from MeOH over a period of several days at ambient temperature. Yield: 84\% (132.3 $\mathrm{mg}, 0.1367 \mathrm{mmol}) . \mathrm{Mp}: 234{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{~F}_{18} \mathrm{ClRh}\left(\mathrm{M}_{\mathrm{w}}: 967.92\right.$ ): C, 43.43; H , 2.60; N, 4.34. Found: C, 43.70; H, 2.98; N, 4.31. IR (KBr, $\mathrm{cm}^{-1}$ ): $v(\mathrm{NH}) 3327$ (br, w); $v(\mathrm{C}=\mathrm{N})$ $1539(\mathrm{~m}) ; v\left(\mathrm{CF}_{3}\right.$, str, asym) $1373(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}\right.$, str, sym) $1280(\mathrm{~s}) ; v\left(\mathrm{CF}_{3}\right.$, def, asym $) 1129(\mathrm{~s}) ; v$ $\left(\mathrm{CF}_{3}\right.$, str, sym $) 883(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 1.66\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right), 6.37(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N} H$ ), $7.25(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar} H), 7.33(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar} H), 7.39(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar} H), 7.49(\mathrm{~s}, 4 \mathrm{H}, \operatorname{Ar} H) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta 9.40\left(\mathrm{CH}_{3}\right), 92.84\left(\mathrm{~d}, J_{\mathrm{RhC}}=8.6 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}\right), 116.38(\mathrm{br}), 117.54$
(br), 121.46, $122.65\left(\mathrm{q}, J_{\mathrm{CF}}=273.0 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 123.18\left(\mathrm{q}, J_{\mathrm{CF}}=273.0 \mathrm{~Hz}, 2 \times C \mathrm{~F}_{3}\right), 123.61$, $132.49\left(\mathrm{q}, J_{\mathrm{CF}}=33.2 \mathrm{~Hz}, 2 \times C \mathrm{CF}_{3}\right), 132.44\left(\mathrm{q}, J_{\mathrm{CF}}=33.2 \mathrm{~Hz}, C \mathrm{CF}_{3}\right), 138.49,145.66,152.95(\mathrm{~d}$, $\left.J_{\mathrm{RhC}}=2.9 \mathrm{~Hz}, C \mathrm{~N}_{3}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta-63.39\left(\mathrm{~s}, 12 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomers 1 and 2), $-63.18\left(\mathrm{~s}, 12 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomer 2), $-63.97\left(\mathrm{~s}, 12 \mathrm{~F}, \mathrm{C} F_{3}\right.$, isomer 1). $\mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ [ion]: $932.0825[\mathrm{M}-\mathrm{Cl}]^{+}, 696.0748[\mathbf{L 9 H}]^{+}$. Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{~F}_{18} \mathrm{ClRh}: 932.0816[\mathrm{M} \mathrm{-} \mathrm{Cl}]^{+}$, $696.0744[\text { L9H }]^{+}$.

Complex 4 Complex 4 was prepared from $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Rh}(\mu-\mathrm{Cl}) \mathrm{Cl}\right]_{2} \quad(50.00 \mathrm{mg}, 0.0809$ mmol), L4 ( $63.20 \mathrm{mg}, 0.1618 \mathrm{mmol}$ ) and $\mathrm{NaOAc}(13.30 \mathrm{mg}, 0.1618 \mathrm{mmol})$ following the procedure previously described for complex $\mathbf{1}$. Needle shaped crystals suitable for SCXRD were obtained from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $n$-hexane over a period of several days at ambient temperature. Yield: $82 \%$ ( $88.00 \mathrm{mg}, 0.1327 \mathrm{mmol}$ ). Mp: $246{ }^{\circ} \mathrm{C}$ (decompn). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{Rh}\left(\mathrm{M}_{\mathrm{w}}\right.$ : 663.27): C, $52.51 ; \mathrm{H}, 4.26 ; \mathrm{N}, 6.34$. Found: C, $52.31 ; \mathrm{H}, 4.24 ; \mathrm{N}, 6.25$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3380(\mathrm{~m}, \mathrm{NH}), 1532(\mathrm{vs}, \mathrm{C}=\mathrm{N}), 743(\mathrm{~s}, \mathrm{C}-\mathrm{Cl})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 revealed the presence of two isomers in about 1.00:0.07 ratio as estimated from the integrals of $\mathrm{CH}_{3}$ protons. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 1.533$ (br, $15 \mathrm{H}, \mathrm{CH}_{3}$, isomer 1), $1.598(\mathrm{~s}, 15 \mathrm{H}$, $\mathrm{CH}_{3}$, isomer 2), $6.222(\mathrm{~s}, 2 \times 1 \mathrm{H}, \mathrm{NH}$, isomers 1 and 2$), 6.537\left(\mathrm{t}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \times 2 \mathrm{H}, \mathrm{ArH}\right.$, isomers 1 and 2), $6.682(\mathrm{br}, 2 \times 1 \mathrm{H}, \mathrm{ArH}$, isomers 1 and 2), $6.850(\mathrm{br}, 2 \times 1 \mathrm{H}, \mathrm{ArH}$, isomers 1 and 2), $6.956\left(\mathrm{dd}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 2 \times 2 \mathrm{H}, \mathrm{ArH}\right.$, isomers 1 and 2$), 7.075(\mathrm{br}, 2 \times 3 \mathrm{H}, \mathrm{ArH}$, isomers 1 and 2), $7.201(\mathrm{br}, 2 \times 1 \mathrm{H}, \mathrm{ArH}$, isomers 1 and 2), $7.256(\mathrm{~s}, 2 \times 1 \mathrm{H}, \mathrm{ArH}$, isomers 1 and 2), 7.535 (br, $2 \times 1 \mathrm{H}, \mathrm{Ar} H$, isomers 1 and 2$) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta 8.91$ $\left(\mathrm{CH}_{3}\right), 91.97$ (br, $C_{5} \mathrm{Me}_{5}$ ), 122.31, 122.54, 124.25 (br), 126.56 (br), 127.52 (br), 127.81, 128.09, 129.22 (br), 130.30 (br), 134.69, 141.97 ( ArC and ArCH ), 152.88 (br, $\mathrm{CN}_{3}$ ). MS ( $\mathrm{ESI}^{+}$) m/z
[ion]: $626.0406[\mathrm{M}-\mathrm{Cl}]^{+}, 390.0332[\mathbf{L 4 H}]^{+}$. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{Rh}: 626.0404[\mathrm{M}-\mathrm{Cl}]^{+}$, $390.0332[\mathbf{L 4 H}]^{+}$.

Complex 5 Complex 5 was prepared from $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Rh}(\mu-\mathrm{Cl}) \mathrm{Cl}\right]_{2} \quad(50.00 \mathrm{mg}, 0.0809$ mmol), L5 ( $63.20 \mathrm{mg}, 0.1618 \mathrm{mmol}$ ) and $\mathrm{NaOAc}(13.30 \mathrm{mg}, 0.1618 \mathrm{mmol})$ following the procedure previously described for complex 1. Plate like crystals suitable for SCXRD were obtained from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $n$-hexane over a period of several days at ambient temperature. Yield: $85 \%$ ( $91.20 \mathrm{mg}, 0.1375 \mathrm{mmol}$ ). Mp: $274{ }^{\circ} \mathrm{C}$ (decompn). Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{Rh}\left(\mathrm{M}_{\mathrm{w}}\right.$ : 663.27): C, 52.51; H, 4.26; N, 6.34. Found: C, 52.37 ; H, 4.39; N, 6.57. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3334(\mathrm{w}, \mathrm{NH}), 1485(\mathrm{vs}, \mathrm{C}=\mathrm{N}), 828(\mathrm{~m}, \mathrm{C}-\mathrm{Cl}) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right)$ : $\delta 1.60\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{C} H_{3}\right), 5.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N} H), 6.74\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right), 6.88\left(\mathrm{~d}, J_{\mathrm{HH}}=8.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{Ar} H), 7.02\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H\right), 7.08\left(\mathrm{~d}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar} H\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta 9.32\left(\mathrm{CH}_{3}\right), 91.86\left(\mathrm{~d}, J_{\mathrm{RhC}}=8.5 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}\right), 122.05,125.36$, 127.87, 128.26, 128.59, 128.87, 129.53, 136.77, $143.40(\mathrm{ArC}$ and ArCH$), 154.49\left(\mathrm{CN}_{3}\right) . \mathrm{MS}$ $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ [ion]: $626.0399[\mathrm{M}-\mathrm{Cl}]^{+}, 390.0328[\mathbf{L 5 H}]^{+}$. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{Cl}_{4} \mathrm{~N}_{3} \mathrm{Rh}: 626.0404$ [M $-\mathrm{Cl}]^{+}, 390.0332[\mathbf{L 5 H}]^{+}$.

Complex 6 Complex 6 was prepared from $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Rh}(\mu-\mathrm{Cl}) \mathrm{Cl}\right]_{2}(50.00 \mathrm{mg}, 0.0809$ mmol), L6 ( $55.20 \mathrm{mg}, 0.1618 \mathrm{mmol}$ ) and $\mathrm{NaOAc}(13.30 \mathrm{mg}, 0.1618 \mathrm{mmol})$ following the procedure previously described for complex $\mathbf{1}$. Needle shaped crystals suitable for SCXRD were obtained from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $n$-hexane over a period of several days at ambient temperature. Yield: $80 \%$ ( $79.40 \mathrm{mg}, 0.1294 \mathrm{mmol}$ ). Mp: $233{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{ClN}_{3} \mathrm{Rh}\left(\mathrm{M}_{\mathrm{w}}\right.$ : 613.91): C, 56.74; H, 4.60; N, 6.84. Found: C, 56.57; H, 4.28; N, 6.76. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3394(\mathrm{~m}, \mathrm{NH}), 1500(\mathrm{vs}, \mathrm{C}=\mathrm{N}), 748(\mathrm{~s}, \mathrm{C}-\mathrm{F}) .{ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ $1.58\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right), 6.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 6.73(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 6.81-6.97(\mathrm{~m}, 6 \mathrm{H}$,
$\mathrm{Ar} H), 7.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.33\left(\mathrm{t}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}\right.$, ppm): $\delta 8.88\left(C H_{3}\right), 91.96\left(\mathrm{~d}, J_{\mathrm{RhC}}=8.5 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}\right), 114.27\left(\mathrm{~d}, J_{\mathrm{CF}}=19.2 \mathrm{~Hz}, \mathrm{ArC}\right), 115.28(\mathrm{~d}$, $\left.J_{\mathrm{CF}}=21.1 \mathrm{~Hz}, \mathrm{Ar} C\right), 122.71,122.95,123.50,123.73\left(\mathrm{~d}, J_{\mathrm{CF}}=7.6 \mathrm{~Hz}, \mathrm{ArC}\right), 124.38,124.73$, $126.06\left(\mathrm{~d}, J_{\mathrm{CF}}=11.5 \mathrm{~Hz}, \mathrm{Ar} C\right), 126.50,132.40\left(\mathrm{~d}, J_{\mathrm{CF}}=11.5 \mathrm{~Hz}, \mathrm{Ar} C\right), 154.50,155.68(\mathrm{Ar} C$ and ArCH$), 158.10\left(\mathrm{CN}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta-67.09(\mathrm{~s}, 1 \mathrm{~F}, \mathrm{ArCF}),-60.26$ (s, 2F, $\operatorname{ArCF}$ ). MS $\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}$ [ion]: $578.1294[\mathrm{M}-\mathrm{Cl}]^{+}, 342.1216[\mathrm{L6H}]^{+}$. Calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{ClN}_{3} \mathrm{Rh}: 578.1290[\mathrm{M}-\mathrm{Cl}]^{+}, 342.1218[\mathbf{L 6 H}]^{+}$.

Complex 7 Complex 7 was prepared from $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \operatorname{Ir}(\mu-\mathrm{Cl}) \mathrm{Cl}\right]_{2}(50.00 \mathrm{mg}, 0.0627$ mmol), L9 ( $87.07 \mathrm{mg}, 0.1254 \mathrm{mmol}$ ) and $\mathrm{NaOAc}(10.30 \mathrm{mg}, 0.1254 \mathrm{mmol}$ ) following the procedure previously described for complex 1. Rectangular crystals suitable for SCXRD were obtained from a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $n$-hexane over a period of two days at ambient temperature. Yield: $74 \%(98.20 \mathrm{mg}, 0.0929 \mathrm{mmol}) . \mathrm{Mp}: 221{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{~F}_{18} \mathrm{ClIr}$ ( $\mathrm{M}_{\mathrm{w}}$ : 1057.23): C, 39.76; H, 2.38; N, 3.97. Found: C, 39.64; H, 2.33; N, 3.96. IR ( $\mathrm{KBr}, \mathrm{cm}^{-1}$ ): $3429(\mathrm{w}, \mathrm{NH}), 1537(\mathrm{~m}, \mathrm{C}=\mathrm{N}), 1375\left(\mathrm{~m}, \mathrm{CF}_{3}\right.$, str, asym), 1286 (m, $\mathrm{CF}_{3}$, str, sym), 1133 (s, $\mathrm{CF}_{3}$, def, asym), 906 ( $\mathrm{m}, \mathrm{CF}_{3}$, def, sym). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ $1.64\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right), 6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 7.48(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar} H)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta 9.54\left(\mathrm{CH}_{3}\right), 84.60\left(\mathrm{~s}, C_{5} \mathrm{Me}_{5}\right), 116.62(\mathrm{br}), 118.00$ (br), 122.14, $122.64\left(\mathrm{q}, J_{\mathrm{CF}}=272.8 \mathrm{~Hz}, C \mathrm{~F}_{3}\right), 123.11\left(\mathrm{q}, J_{\mathrm{CF}}=273.1 \mathrm{~Hz}, 2 \times C \mathrm{~F}_{3}\right), 123.19$, $132.49\left(\mathrm{q}, J_{\mathrm{CF}}=33.2 \mathrm{~Hz}, C \mathrm{CF}_{3}\right), 137.84,144.35,155.26\left(\mathrm{CN}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.5 \mathrm{MHz}\right.$, ppm): $\delta-63.44\left(\mathrm{~s}, 6 \mathrm{~F}, \mathrm{C} F_{3}\right),-63.04\left(\mathrm{~s}, 12 \mathrm{~F}, \mathrm{C} F_{3}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) \mathrm{m} / \mathrm{z}[\mathrm{ion}]: 1022.1405[\mathrm{M}-\mathrm{Cl}]^{+}$, $696.0747[\mathbf{L 9 H}]^{+}$. Calcd for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{~F}_{18} \mathrm{ClIr}: 1022.1390[\mathrm{M}-\mathrm{Cl}]^{+}, 696.0744[\mathbf{L 9 H}]^{+}$.

Complex 8 Complex 4 ( $50.00 \mathrm{mg}, 0.0753 \mathrm{mmol}$ ) and $\mathrm{AgSbF}_{6}(28.50 \mathrm{mg}, 0.0829 \mathrm{mmol})$ were dispersed in MeCN in a 25 mL RB capped with $\mathrm{CaCl}_{2}$ guard tube and the resulting
heterogeneous mixture was stirred at RT for 6 h in dark. The volatiles from the reaction mixture were removed under vacuum to afford a blackish orange solid and the solid was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the insoluble AgCl was filtered off. The extract was layered with $n$-hexane and stored at ambient condition for several days to afford orange needle crystals suitable for SCXRD. Yield: $90 \%$ ( $61.20 \mathrm{mg}, 0.0677 \mathrm{mmol}$ ). Mp: $198{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{Cl}_{3} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{RhSb} \cdot \mathrm{H}_{2} \mathrm{O}$ ( $\mathrm{M}_{\mathrm{w}}: 904.61+18.01$ ): C, 40.36 ; H, 3.60; N, 6.07. Found: C, 40.38 ; H, 3.37; N, 5.83. IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3387(\mathrm{w}, \mathrm{NH}), 1546(\mathrm{~m}, \mathrm{C}=\mathrm{N}), 755(\mathrm{w}, \mathrm{C}-\mathrm{Cl}), 658(\mathrm{~m}, \mathrm{Sb}-\mathrm{F})$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 8 revealed the presence of two isomers in about 1.00:0.13 ratio as estimated from the integrals of $\mathrm{CH}_{3}$ and NH protons. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 1.49\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{CH}_{3}\right.$, isomer 1$), 1.60$ (br, $15 \mathrm{H}, \mathrm{CH}_{3}$, isomer 2), $2.36\left(\mathrm{br}, 2 \times 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}\right.$, isomers 1 and 2), $6.25,6.40$ (each s, $2 \times 1 \mathrm{H}$, NH , isomers 2 and 1, respectively), $6.69(\mathrm{~m}, 2 \times 2 \mathrm{H}, \mathrm{ArH}$, isomers 1 and 2$), 6.79(\mathrm{~m}, 2 \times 1 \mathrm{H}$, ArH , isomers 1 and 2), 6.98-7.15 (m, $2 \times 5 \mathrm{H}, \mathrm{ArH}$, isomers 1 and 2), 7.19-7.25 (m, $2 \times 1 \mathrm{H}$, ArH , isomers 1 and 2), $7.28-7.45(\mathrm{~m}, 2 \times 2 \mathrm{H}, \mathrm{Ar} H$, isomers 1 and 2$), 7.50-7.62(\mathrm{~m}, 2 \times 1 \mathrm{H}$, ArH , isomers 1 and 2). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{8}$ revealed the presence of two isomers as identified from the signals of $\mathrm{CH}_{3}$ and $C_{5} \mathrm{Me}_{5}$ carbons. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}\right.$, ppm $): \delta 3.08\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, isomers 1 and 2), $8.55,9.34\left(\mathrm{CH}_{3}\right.$, isomers 1 and 2, respectively), 95.06 $\left(\mathrm{d}, J_{\mathrm{RhC}}=8.6 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}\right.$, isomer 1 $), 97.80\left(J_{\mathrm{RhC}}=5.7 \mathrm{~Hz}, C_{5} \mathrm{Me}_{5}\right.$, isomer 2), 120.75, 121.72, $123.79,124.31,124.92,125.56$ (br), 126.20, 126.85, 127.51, 127.81, 128.35 (br), 128.42, 128.49, $128.74,128.97,129.07,129.57,129.92,130.20,130.52,130.76,130.86,132.24,133.64,133.92$, $137.04\left(\mathrm{ArC}\right.$ and ArCH , isomers 1 and 2), $139.73\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, isomer 1), $144.21\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, isomer 2), $152.62\left(C \mathrm{~N}_{3}\right.$, isomer 2), $155.92\left(C \mathrm{~N}_{3}\right.$, isomer 1$) . \Lambda_{\mathrm{m}}\left(\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}, 300 \mathrm{~K}, \mathrm{MeCN}\right)=64.0$ $\left(10^{-3} \mathrm{M}\right) . \mathrm{MS}\left(\mathrm{ESI}^{+}\right) m / z[\mathrm{ion}]: 580.9514\left[\left\{\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Rh}(\mu-\mathrm{Cl}) \mathrm{Cl}\right\}_{2}-\mathrm{Cl}\right]^{+}, 390.0326[\mathbf{L 4 H}]^{+}$. Calcd for $580.9520\left[\left\{\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Rh}(\mu-\mathrm{Cl}) \mathrm{Cl}\right\}_{2}-\mathrm{Cl}\right]^{+}, 390.0332[\mathbf{L} 4 \mathrm{H}]^{+}$.

## 7. General procedure for transfer hydrogenation and etherification catalysis

The catalyst ( 0.01 mmol ) was dissolved in a solution containing the substrate $(1.0 \mathrm{mmol})$, and 2propanol ( 4.0 mL ) in a 10 mL RB flask which was fitted to a water condenser capped with $\mathrm{CaCl}_{2}$ guard tube. The solution was simultaneously stirred and heated at $82^{\circ} \mathrm{C}$ for 4 h and cooled. The volatiles were removed under vacuum. The percentage conversions in TH of substrates studied were estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy through comparisons of the integrals of signature proton(s) of the substrates and the respective reduction products. Note: KOH ( 1.0 mmol ) was added wherever TH was carried out in the presence of a base.

## 8. Syntheses and characterization data of 17 and 18

Complex 3 ( $6.5 \mathrm{mg}, 1.0 \mathrm{~mol} \%$ ) was dissolved in a solution containing 4-acetylbenzaldehyde $(100.0 \mathrm{mg}, 0.670 \mathrm{mmol})$, and 2-propanol $(4.0 \mathrm{~mL})$ in a 10 RB flask which was fitted to a water condenser capped with $\mathrm{CaCl}_{2}$ guard tube. The solution was simultaneously stirred and heated at $82^{\circ} \mathrm{C}$ for 10 min (for $\mathbf{1 7}$ ) and 500 min (for $\mathbf{1 8}$ ) and cooled. The volatiles from the reaction mixture were removed under vacuum and the product in each case was purified by a short column on silica gel using ethylacetate/n-hexane (10/90, v/v) mixture as eluent.


Isolated yield: $91 \%(91.6 \mathrm{mg}, 0.610 \mathrm{mmol}) . \mathrm{Mp}: 53{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ $2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.43,7.92\left(\right.$ each d, $\left.J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \times 2 \mathrm{H}, \mathrm{ArH}\right)$.


18

Isolated yield: $98 \%(101 \mathrm{mg}, 0.660 \mathrm{mmol}) . \mathrm{Mp}: 65{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta$ $\left.1.45\left(\mathrm{~d}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.53(\mathrm{br}, 1 \mathrm{H}, \mathrm{OH}), 4.60(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH})_{2}\right), 4.84\left(\mathrm{q}, J_{\mathrm{HH}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\operatorname{MeCH}(\mathrm{OH})$ ), 7.27, $7.30\left(\right.$ each d, $\left.J_{\mathrm{HH}}=8.4 \mathrm{~Hz}, 2 \times 2 \mathrm{H}, \operatorname{ArH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100.5\right.$ MHz, ppm): $\delta 25.2,65.0,70.2,125.7,127.3,140.1,145.3$.

## 9. Characterisation data for 1-(isopropoxymethyl)naphthalen-2-ol



Isolated yield: $82 \%(103 \mathrm{mg}, 0.480 \mathrm{mmol}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, \mathrm{ppm}\right): \delta 1.34\left(\mathrm{~d}, J_{\mathrm{HH}}=\right.$ $\left.6.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.12\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{ArH}), 7.32\left(\mathrm{t}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.46\left(\mathrm{t}, J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.69\left(\mathrm{~d}, J_{\mathrm{HH}}=8.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.70\left(\mathrm{~d}, J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.78\left(\mathrm{~d}, J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 9.12(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{OH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.5 \mathrm{MHz}, \mathrm{ppm}\right): \delta 22.0,67.0,73.0,112.1,119.5,120.9,123.0$, $126.6,128.7,128.9,129.5,131.6,154.8$. This compound is an oil and our attempts to obtain satisfactory HR-MS data were not successful.

## X-ray crystallography

Single crystals of guanidines $\mathbf{L 5}$ and $\mathbf{L 6}$ were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane mixture and ethanol, respectively. Single crystals of $\mathbf{L 9}$ were grown from $\mathrm{CHCl}_{3} / n$-hexane mixture at RT by slow evaporation method (see Figs. S8 and S9). Suitable crystals for X-ray diffraction were carefully selected after examination under an optical microscope and mounted on the goniometer head. The unit cell parameters and intensity data were collected on Oxford Xcalibur S diffractometer (4-circle kappa goniometer, Sapphire-3 CCD detector, omega scans, graphite monochrometer, and a single wavelength Enhance X-ray source with MoK $\alpha$ radiation). ${ }^{16}$ Pre-experiment, data
collection, data reduction, and absorption corrections were performed with the CrysAlisPro software suite. ${ }^{17}$ The structures were solved by direct methods using SIR $92,{ }^{18}$ which revealed the atomic positions, and refined using the SHELX-97 program package ${ }^{19}$ and SHELXL97 (within the WinGX program package). ${ }^{20}$ Non-hydrogen atoms were refined anisotropically. $\mathrm{C}-\mathrm{H} / \mathrm{N}-\mathrm{H}$ hydrogen atoms were placed in geometrically calculated positions by using a riding model. The molecular structures were created with Olex2 program. ${ }^{21}$

## References

1. K. Gopi, B. Rathi and N. Thirupathi, J. Chem. Sci., 2010, 122, 157.
2. R. Kishan, R. Kumar, S. Baskaran, C. Sivasankar and N. Thirupathi, Eur. J. Inorg. Chem., 2015, 3182.
3. J. W. Kang, K. Moseley and P. M. Maitlis, J. Am. Chem. Soc., 1969, 91, 5970.
4. P. J. Bailey, L. A. Mitchell and S. Parsons, J. Chem. Soc., Dalton Trans., 1996, 2839.
5. R. Kishan, PhD Thesis, University of Delhi, 2015.
6. R. Kumar, PhD Thesis, University of Delhi, 2017.
7. E. P. Kohler and H. M. Chadwell, Org. Synth., 1922, 2, 1.
8. D. S. Laitar, C. J. N. Mathison, W. M. Davis and J. P. Sadighi, Inorg. Chem., 2003, 42, 7354.
9. C. Mueller, A. Zimmer, S. Labs, S. Buchholz and S. Hinz, Life \& Brain GmbH, Germany WO 2012076974, Al, 14 June 2012.
10. N. E. Travia, Z. Xu, J. M. Keith, E. A. Ison, P. E. Fanwick, M. B. Hall and M. M. AbuOmar, Inorg. Chem., 2011, 50, 10505.
11. P. Martin, D. S. Marynick, K. Rajeshwar, W. N. Chou, L. Throckmorton, W. T. Eric, C. Y. P. Chen and T. Cain, J. Org. Chem., 1986, 51, 1223.
12. F. Kurzer and J. Canelle, Tetrahedron, 1963, 19, 1603.
13. C. B. Tripathi and S. Mukherjee, J. Org. Chem., 2012, 77, 1592.
14. N. Busschaert, I. L. Kirby, S. Young, S. J. Coles, P. N. Horton, M. E. Light and P. A. Gale, Angew. Chem. Int. Ed., 2012, 51, 4426.
15. P. Molina, M. Alajarin and J. Saez, Synth. Commun., 1983, 13, 67.
16. ENHANCE, Oxford Xcalibur Single Crystal Diffractometer, version 1.171.34.40; Oxford Diffraction Ltd: Oxford, U.K., 2006.
17. CrysAlisPro, version 1.171.34.40; Oxford Diffraction Ltd: Oxford, U.K., 2006.
18. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435.
19. G. M. Sheldrick, University of Gottingen, Gottingen, Germany, 1997.
20. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.
21. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.


Fig. S1 Molecular structures of 1,2 and $\mathbf{4}$ at the 30\% probability level.


Fig. S2 Molecular structures of $\mathbf{5 - 8}$ at the $\mathbf{3 0 \%}$ probability level.

syn-syn

anti-syn

syn-anti

anti-anti

Fig. S3 Four conformers of the guanidinato ligands in 1, 4 and 6. $=\mathrm{CF}_{3}, \mathrm{Cl}, \mathrm{F} ;[\mathrm{Rh}]=\left[\left(\eta^{5}-\right.\right.$ Cp*) RhCl].


Fig. S4 Plausible guanidine centered rearrangements of $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{RhCl}(N N)\right] ; N N=N, N^{\prime}, N^{\prime \prime}-$

Triarylguanidinato ligands with Ar being $o$-substituted aryl ring.



Fig. S5 Two rotamers of $\mathbf{3}$ in solution as revealed by ${ }^{19} \mathrm{~F}$ NMR spectroscopy. $O=\mathrm{CF}_{3} ;[\mathrm{Rh}]=$ $\left[\left(\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{RhCl}\right]$.


Fig. S6 VT ${ }^{19} \mathrm{~F}$ NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectra of $\mathbf{3}$ illustrated for $\mathrm{CF}_{3}$ fluorine of the guanidinato ligand


Fig. S7 VT ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ ) spectra of 4 illustrated for NH proton of the guanidinate ligand.


L6

Fig. S8 Molecular structures of L5 and L6 at the 30\% probability level.


Fig. S9 Molecular structure of $\mathbf{L 9}$ at the $30 \%$ probability level. There are two molecules per asymmetric unit of $\mathbf{L 9}$ but only molecule one is shown here.


Fig. $\mathbf{S 1 0}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{L} 7$


Fig. $\mathbf{S 1 1}{ }^{19} \mathrm{~F}$ NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{L} 7$


Fig. $\mathbf{S 1 2}{ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{L} 7$


Fig. $\mathbf{S 1 3}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{L 8}$


Fig. $\mathbf{S 1 4}{ }^{19}$ F NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{L 8}$


Fig. $\mathbf{S 1 5}{ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{L 8}$


Fig. S16 HETCOR spectrum for L8


X : parts per Million : 1 H
Fig. $\mathbf{S 1 7}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{L 9}$


Fig. S18 ${ }^{19} \mathrm{~F}$ NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{L 9}$


Fig. S19 ${ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{L 9}$


Fig. S20 HETCOR spectrum for $\mathbf{L 9}$


Fig. S21 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{1}$


Figure $\mathbf{S 2 2}{ }^{19} \mathrm{~F}$ NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{1}$


Fig. S23 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, at $\left.1.3090 \times 10^{-2} \mathbf{M}\right)$ spectrum of $\mathbf{2}$


Fig. S24 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, at $\left.13.090 \times 10^{-2} \mathbf{M}\right)$ spectrum of 2


X : parts per Million : 19F
Fig. S25 ${ }^{19} \mathrm{~F}$ NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, at $1.3090 \times 10^{-2} \mathrm{M}$ ) spectrum of $\mathbf{2}$


Fig. S26 ${ }^{19} \mathrm{~F}$ NMR $\left(376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, at $\left.13.090 \times 10^{-2} \mathrm{M}\right)$ spectrum of $\mathbf{2}$


Fig. S27 ${ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$, at $13.090 \times 10^{-2} \mathrm{M}$ ) spectrum of 2


Fig. S28 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3}$


Fig. S29 ${ }^{19}$ F NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{3}$


Fig. S30 ${ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{3}$


Fig. S31 ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{4}$


Fig. S32 ${ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of 4


Fig. S33 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 5


Fig. S34 ${ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{5}$


Fig. $\mathbf{S 3 5}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{6}$


Fig. S36 ${ }^{19}$ F NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of 6


Fig. S37 ${ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{6}$


Fig. S38 ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 7


Fig. S39 ${ }^{19}$ F NMR ( $376.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of 7


Fig. $\mathbf{S 4 0}{ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of 7


Fig. $\mathbf{S 4 1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{8}$


Fig. S42 ${ }^{13} \mathrm{C}$ NMR ( $100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{8}$


Fig. $\mathbf{S 4 3}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{1 7}$


Fig. $\mathbf{S 4 4}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{1 8}$


Fig. $\mathbf{S 4 5}{ }^{13} \mathrm{C}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of $\mathbf{1 8}$


Fig. S46 ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) spectrum of 1-(Isopropoxymethyl)naphthalen-2-ol


Fig. S47 ${ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectrum of 1-(Isopropoxymethyl)naphthalen-2-ol


Scheme S1 Plausible mechanism of TH of 4-nitroacetophenone in the presence of $\mathbf{3}$ under basic condition

Table S1 Screening of ( $\left.\eta^{5}-\mathrm{Cp}^{*}\right) \mathrm{Rh}$ (III) guanidinato complexes as catalysts in TH-etherification of 2-hydroxy-1-naphthaldehyde.


| Entry | Catalyst | Conversion (\%) | TON |
| :---: | :---: | :---: | :---: |
| 1 | $\mathbf{1}$ | 95 | 95 |
| 2 | $\mathbf{2}$ | 97 | 97 |
| 3 | $\mathbf{4}$ | 97 | 97 |
| 4 | $\mathbf{6}$ | 98 | 98 |
| 5 | $\mathbf{9}$ | 99 | 99 |
| 6 | $\mathbf{1 0}$ | 98 | 98 |
| 7 | $\mathbf{3}$ | 2 | $2^{a}$ |

${ }^{a}$ Reaction was carried out at RT for 12 h

