Electronic Supporting Information

Imidazolium-Based Ionic Liquids Catalyzed Hydrosilylation of Imines and Reductive Amination of Aldehydes Using Hydrosilane as the Reductant
Bin Li ${ }^{\text {a* }}$, Shilin Zhang ${ }^{\text {a }}$, Weizhen Wua , Lecheng Liang ${ }^{\text {ab }}$, Shaohua Jiang ${ }^{\text {a }}$, Lu Chen ${ }^{\text {a* }}$ and Yibiao Li^{a}
${ }^{a}$ School of Chemical \& Environmental Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, P.R. China
${ }^{b}$ Guangdong Wamo New Material Technology Co., Ltd, Jiangmen 529020, Guangdong Province, P.R. China

Table of Contents

S2 General remarks

S2 General procedures for hydrosilylation reactions
S3 Characterization data of substrates
S9 1H and 13C NMR Spectra

General remarks

All reagents were obtained from commercial sources and used as received. Ethanol (anhydrous) were used as received. Technical grade petroleum ether ($40-60^{\circ} \mathrm{C}$ bp.) and ethyl acetate were used for chromatography column.
${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} at ambient temperature on Bruker AVANCE I 300 spectrometers at 300.1 MHz , using the solvent as internal standard (7.26 ppm). ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 75 MHz and referenced to the internal solvent signals (central peak is 77.2 ppm). Chemical shift (δ) and coupling constants (J) are given in ppm and in Hz , respectively. The peak patterns are indicated as follows: s , singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and br. for broad.
GC analyses were performed with GC-2010 (Shimadzu) equipped with a $30-\mathrm{m}$ capillary column (Supelco, SPBTM-20, fused silica capillary column, $30 \mathrm{M}^{*} 0.25$ $\mathrm{mm} * 0.25 \mathrm{~mm}$ film thickness), was used with $\mathrm{N}_{2} /$ air as vector gas. The following GC conditions were used: initial temperature $80^{\circ} \mathrm{C}$, for 2 minutes, then rate $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. until $260^{\circ} \mathrm{C}$ and $260^{\circ} \mathrm{C}$ for 10 minutes.

Method A: General procedure for [BMIm] $\left.] \mathrm{FeCl}_{4}\right]$ catalyzed hydrosilylation of imines

$[\mathrm{BMIm}]\left[\mathrm{FeCl}_{4}\right](0.1 \mathrm{mmol}, 33.6 \mathrm{mg})$, imine (0.5 mmol), $\mathrm{Ph}_{2} \mathrm{SiH}_{2}(0.75 \mathrm{mmol}, 139 \mu \mathrm{~L})$, and ethanol (2 mL) were introduced in Schlenck tube under air, equipped with magnetic stirring bar and was stirred at $80^{\circ} \mathrm{C}$. After 16 h , the conversion of the reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent.

Method B: General procedure for $[$ BMIm $]\left[\mathrm{FeCl}_{4}\right]$ catalyzed reductive amination of aldhydes and anilines

[BMIm] $\left[\mathrm{FeCl}_{4}\right]$ ($0.1 \mathrm{mmol}, 33.6 \mathrm{mg}$), aldhydes (0.6 mmol), aniline (0.5 mmol), $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$ ($0.75 \mathrm{mmol}, 139 \mu \mathrm{~L}$), $4 \AA$ molecular sieves (200 mg) and ethanol (2 mL) were introduced in Schlenck tube under air, equipped with magnetic stirring bar and was stirred at $80{ }^{\circ} \mathrm{C}$. After 16 h , the conversion of the reaction was analyzed by gas chromatography. The solvent was then evaporated under vacuum and the desired product was purified by using a silica gel chromatography column and a mixture of petrol ether/ethyl acetate as eluent.

Characterization data of substrates

4-Methyl- N-(benzyl)aniline ${ }^{1}$ (4a)

Light yellow oil, Method A: yield $=85 \%, 84 \mathrm{mg}$; Method B: yield $=80 \%$, 79 mg .
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.04-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.37$ (s, 2H), 3.96 (brs, 1 H), 2.31 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=146.1,139.8,129.9,128.7,127.6,127.3,126.9,113.1,48.8$, 20.6 .

N-(4-Methoxybenzyl)-4-methylaniline ${ }^{1}$ (4b)

Light yellow powder, Melting Point: $79-81^{\circ} \mathrm{C}$, Method A: yield $=84 \%, 89 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.06(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 6.94(\mathrm{~d}, 2 \mathrm{H}$, $J=8.1 \mathrm{~Hz}), 6.63(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}+\mathrm{brs}, 4 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.9,146.1,131.7,129.8,128.8,126.7,114.0,113.1,55.3$, 48.2, 20.5.

N-(3-Methyl)-4-methylaniline ${ }^{2}$ (4c)

Light yellow oil, Method A: yield $=88 \%$, 93 mg ; Method B: yield $=85 \%, 90 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.17-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.67(\mathrm{~d}, 2 \mathrm{H}, J=$ 7.8 Hz), 4.35 (s, 2H), 3.97 (brs, 1H), 2.45 (s, 3H), 2.34 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.1,139.7,138.4,129.9,128.7,128.5,128.1,127.0,124.8$, 113.3, 48.9, 21.6, 20.6.

4-Methyl- N-(4-nitrobenzyl)aniline ${ }^{1}$ (4d)

Red oil, Method A: yield $=36 \%, 44 \mathrm{mg}$; Method B: yield $=48 \%, 58 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.20(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.55(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.02(\mathrm{~d}, 2 \mathrm{H}$, $J=7.8 \mathrm{~Hz}), 6.54(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{brs}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.0,147.2,145.2,130.0,127.8,127.5,123.9,113.2,48.0$, 20.5.
N-(4-Cyanobenzyl)-4-methylaniline ${ }^{1}$ (4e)

Orange powder, Melting Point: $88-90^{\circ} \mathrm{C}$, Method A: yield $=52 \%, 58 \mathrm{mg}$; Method B: yield $=$ $55 \%, 61 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.60-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.00-7.02(\mathrm{~m}, 2 \mathrm{H})$, 6.50-6.54 (m, 2H), $4.42(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{brs}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.7,145.2,132.4,129.9,127.7,127.3,118.9,113.0,110.8$, 48.1, 20.4.

N-Benzylaniline ${ }^{3}(4 f)$

Light yellow oil, Method A: yield $=94 \%, 86 \mathrm{mg}$;
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 1 \mathrm{H})$, 6.70-6.67 (m, 2H), $4.38(\mathrm{~s}, 2 \mathrm{H}), 4.11$ (brs, 1H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=148.3,139.6,129.4,128.8,127.7,127.4,117.8,113.0,48.5$.

N-(4-bromobenzyl)aniline ${ }^{4}$ (4g)

Light yellow oil, Method A: yield $=70 \%, 91 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=7.43-7.30(\mathrm{~m}, 7 \mathrm{H}), 6.57-6.54(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 4.04$ (brs, 1H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=147.1,139.0,132.0,128.8,127.5,127.4,114.6,109.2,48.3$.
N-[4-(Methyloxycarbonyl)benzyl]aniline ${ }^{2}$ (4h)

White powder, Melting Point: 46-48 ${ }^{\circ} \mathrm{C}$, Method A: yield $=75 \%$, 90 mg .
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.03(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.47(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$), $7.20-7.18$ (m, 2H), $6.77(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}), 6.65(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{brs}, 1 \mathrm{H}), 3.94(\mathrm{~s}$, 3H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=166.9,147.8,145.1,129.8,129.2,128.9,127.0,117.6,112.8$, 51.9, 47.7.

4-Methoxy- N -benzylaniline ${ }^{1}$ (4i)

Light yellow cuboids, Melting Point: $47-49^{\circ} \mathrm{C}$, Method A: yield $=86 \%, 92 \mathrm{mg}$.
Method B: yield $=78 \%, 86 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.84-6.80$ $(\mathrm{m}, 2 \mathrm{H}), 6.67-6.64(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}+\mathrm{brs}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.2,142.5,139.7,128.6,127.6,127.2,114.9,114.1,55.8$, 49.3.

4-methoxy- N-(4-methylbenzyl)aniline ${ }^{5}$ (4j)

Light yellow oil, Method A: yield $=90 \%, 102 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=7.31(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.19(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.83(\mathrm{~d}, 2 \mathrm{H}$, $J=9.0 \mathrm{~Hz}), 6.65(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=152.3,142.7,136.8,134.5,129.4,127.7$, 115.1, 114.3, 55.9, 49.2, 21.2.

4-Bromo- N-(4-methylbenzyl)aniline ${ }^{6}$ (4I)

Light yellow oil, Method A: yield $=72 \%, 99 \mathrm{mg}$.
1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=7.23-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.54-6.57(\mathrm{~m}, 2 \mathrm{H}), 4.31$ (s, 2H), 3.98 (brs, 1 H), 2.44 ($\mathrm{s}, 3 \mathrm{H}$).
13C NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=147.2,137.1,135.9,132.0,129.5,127.5,114.5,109.1,48.1$, 21.2.
N-benzyl-2-methylaniline ${ }^{1}$ (4m)

White powder, Melting Point : 58-60 ${ }^{\circ} \mathrm{C}$, Method A: yield $=77 \%, 76 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.21(\mathrm{~m}, 2 \mathrm{H})$, 6.71-6.81 (m, 2H), 4.47 ($\mathrm{s}, 2 \mathrm{H}$), 3.95 (brs, 1H), 2.27 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=146.2,139.6,130.2,128.8,127.6,127.4,127.3,122.0,117.3$, 110.1, 48.4, 17.7.

N-(Cyclohexylmethyl)-4-methylaniline ${ }^{7}$ (4n)

Light yellow oil, Method A: yield $=75 \%, 76 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.07(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.62(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.63(\mathrm{brs}$, $1 \mathrm{H}), 3.03(\mathrm{~d}, 2 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.40-1.15(\mathrm{~m}, 4 \mathrm{H}), 1.09-1.03(\mathrm{~m}$, 2H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=146.5,129.9,126.3,113.0,51.2,37.7,31.5,26.7,26.1,20.5$.

N-(4-Methyl)-4-methylaniline ${ }^{1}$ (4o)

White powder, Melting Point: 54-56 ${ }^{\circ} \mathrm{C}$, Method B: yield $=86 \%, 91 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.05(\mathrm{~d}, 2 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 6.61-6.64(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{brs}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=146.0,136.7,136.6,129.7,129.2,127.5,126.6,112.9,48.4$, 21.1, 20.4.

N-(4-Bromobenzyl)-4-methylaniline ${ }^{1}$ (4p)

Light yellow powder, Melting Point: 89.5-91 ${ }^{\circ} \mathrm{C}$, Method B: yield $=82 \%, 113 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.48(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.01(\mathrm{~d}, 2 \mathrm{H}$, $J=8.1 \mathrm{~Hz}), 6.56(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{brs}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=145.6,138.8,131.7,129.8,129.1,127.0,120.9,113.1,48.0$, 20.4 .
N-Benzyl-4-chloroaniline ${ }^{8}$ (4q)

Light yellow oil, Method B: yield $=75 \%, 81 \mathrm{mg}$,
1 H NMR ($300 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta=7.36-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.60(\mathrm{~d}, 2 \mathrm{H}, J=$ 9.0 Hz), $4.35(\mathrm{~s}, 2 \mathrm{H}), 4.01$ (brs, 1 H).

13C NMR (75 MHz, CDCl3): $\delta=146.7,139.0,129.2,128.8,127.5,127.4,122.2,114.1,48.4$.

2-Fluoro- N-benzylaniline ${ }^{9}$ (4r)

Colorless oil, Method B: yield $=88 \%, 78 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.34-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.01-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.78(\mathrm{~m}, 2 \mathrm{H})$, 4.43 (s, 2H), 4.21 (brs, 1H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=153.1\left(\mathrm{~d}, J_{C F}=236.9 \mathrm{~Hz}^{2}\right), 139.1,134.5,128.8,128.0,127.5$, $124.7\left(\mathrm{~d}, J_{C F}=3.45 \mathrm{~Hz}\right), 116.9\left(\mathrm{~d}, J_{C F}=6.9 \mathrm{~Hz}\right), 114.4\left(\mathrm{~d}, J_{C F}=18.3 \mathrm{~Hz}_{\mathrm{z}}\right), 112.5\left(\mathrm{~d}, J_{C F}=\right.$ $3.3 \mathrm{~Hz}_{\mathrm{z}}$, 48.0.

N-neopentylaniline ${ }^{10}$ (4s)

Light yellow oil, Method B: yield $=80 \%, 65 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.75$ (m, 3H), 4.80 (brs, 1 H), 2.96 (s, 2H), $1.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl 3$): ~ \delta=149.1,129.2,117.0,112.7,55.9,31.9,27.7$.

Dibenzylamine ${ }^{3}$ (4t)

Colorless oil, Method B: yield $=76 \%, 75 \mathrm{mg}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.27(\mathrm{~m}, 10 \mathrm{H}), 3.85(\mathrm{~s}, 4 \mathrm{H}), 1.87$ (brs, 1 H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.3,128.4,128.2,127.0,53.2$.

References

[1] Li, B.; Sortais, J.-B.; Darcel, C.; Dixneuf, P. H. ChemSusChem, 2012, 5, 396.
[2] Cui, X.; Zhang, Y.; Shi, F.; Deng, Y. Chem. Eur. J., 2011, 17, 2581.
[3] Zheng, J.; Roisnel, T.; Darcel, C.; Sortais, J.-B. ChemCatChem, 2013, 5, 2729.
[4] Liu, P.; Liang, R.; Lu, L.; Yu, Z.; Li, F. J. Org. Chem. 2017, 82, 1943.
[5] Kolesnikov, P. N.; Yagafarov, N. Z.; Usanov, D. L.; Maleev, V. I.; Chusov, D. Org. Lett. 2015, 17, 173.
[6] Motoyama, Y.; Taguchi, M.; Desmira, N.; Yoon, S.-H.; Mochida, I.; Nagashima, H.
Chem-Asian J. 2014, 9, 71.
[7] Zhou, W.; Fan, M.; Yin, J.; Jiang, Y.; Ma, D. J. Am. Chem. Soc., 2015, 137, 11942.
[8] Zhan, L.-W.; Han, L.; Xing, P.; Jiang, B. Org. Lett. 2015, 17, 5990.
[9] Zhao, Y.; Foo, S. W.; Saito, S. Angew. Chem., Int. Ed., 2011, 50, 3006.
[10] Sorribes, I.; Junge, K.; Beller, M. J. Am. Chem. Soc., 2014, 136, 14314.

4-Methyl- N-(benzyl)aniline (4a)

Parameter	Value
1 Origin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	296.9
4 Pulse Sequence	2 gpg 30
5 Number of Scans	41
6 Receiver Gain	16384
7 Relaxation Delay	2. 0000
8 Pulse Width	6. 3500
9 Spectroneter Frequency	75. 47
10 Spectral Width	17985.6
11 Lowest Frequency	-1447.0
12 Nucleus	13 C
13 Acquired Size	32768
14 Spectral Size	65536

N-(4-Methoxybenzyl)-4-methylaniline (4b)

N -(3-Methyl)-4-methylaniline (4c)

4-Methyl-N-(4-nitrobenzyl)aniline (4d)

[^0]
N-(4-Cyanobenzyl)-4-methylaniline (4e)

N-Benzylaniline (4f)

N-(4-bromobenzyl)aniline (4g)

N-[4-(Methyloxycarbonyl)benzyl]aniline (4h)

4-Methoxy- N-benzylaniline (4i)

4-methoxy-N-(4-methylbenzyl)aniline (4j)

4-Bromo- N-(4-methylbenzyl)aniline (41)

$$
-16000
$$

Parameter	Value
1 Origin	Bruker BioSpin GmbH
2 Solvent	CDC13
3 Temperature	298.0
4 Pulse Sequence	zg30
5 Number of Scans	16
6 Receiver Gain	32
7 Relaxation Delay	1.0000
8 Pulse Width	15.0000
9 Spectrometer Frequency	300.13
10 Spectral Width	6009.6
11 Lowest Frequency	-1151.4
12 Nucleus	1H
13 Acquired Size	32768
14 Spectral Size	65536

ㅌiesiow o

$\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

N-benzyl-2-methylaniline (4m)

(

N-(Cyclohexylmethyl)-4-methylaniline (4n)

N-(4-Methyl)-4-methylaniline (4o)

N-(4-Bromobenzyl)-4-methylaniline (4p)

(
(

N-Benzyl-4-chloroaniline (4q)

2-Fluoro- N-benzylaniline (4r)

N-neopentylaniline (4s)

Dibenzylamine (4t)

(

[^0]: $\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ \mathrm{fl} & (\mathrm{nmm})\end{array}$

