## A new near-infrared ratiometric fluorescent probe for hydrazine

Yangyang He,<sup>a,b</sup> Zhanxian Li,<sup>b</sup> Bingjie Shi,<sup>b</sup> Zhen An,<sup>b</sup> Mingming Yu,<sup>b</sup> Liuhe Wei,<sup>b</sup> Zhonghai Ni<sup>\*,a</sup>

<sup>*a*</sup> School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, China

<sup>b</sup> College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

\* Corresponding author

E-mail: nizhonghai@cumt.edu.cn.



**Fig. S1** Absorbance of compound 1  $[1.0 \times 10^{-5} \text{ M in 5:5 (v/v) 0.01M HEPES/DMSO pH 7.4]} (black circle) as a function of addition of hydrazine water solution. A<sub>418</sub> and A<sub>584</sub> represent the absorbance at 418 nm and 584 nm. The reaction time is 24 hour.$ 



**Fig. S2** The relationship of ratiometric fluorescence change of probe 1  $[1.0 \times 10^{-5} \text{ M}]$  in 5:5 (v/v) 0.01 M HEPES/DMSO, pH 7.4] with the concentration of hydrazine upon excitation at 450 nm. I<sub>510</sub> and I<sub>660</sub> represent the emission intensity of probe 1 at 510 nm and 660 nm respectively.



**Fig. S3** The relationship of fluorescence change at 660 nm of probe **1**  $[1.0 \times 10^{-5}$  M in 5:5 (v/v) 0.01M HEPES/DMSO pH 7.4] with the concentration of hydrazine upon excitation at 5100 nm. I<sub>660</sub> represents the emission intensity of probe **1** at 660 nm.



Fig. S4 HRMS spectrum of probe 1.



Fig. S5 HRMS spectrum of probe 1 reaction with hydrazine.



**Fig. S6** Fluorescence responses of **1**  $[1.0 \times 10^{-5}$  M in 5:5 (v/v) 0.01M HEPES/DMSO pH 7.4] upon addition of different species (100 equiv of species relative to **1**) (green bars) with excitation at 450 nm, and fluorescence changes of the mixture of **1** and hydrazine  $(1.0 \times 10^{-3}$  M in water) after addition of an excess of the indicated species (100 equiv relative to **1**) (red bars) with excitation at 450 nm. I<sub>510</sub> and I<sub>660</sub> represent the emission intensity at 510 nm. Intensity means the emission intensity at 660 nm. The species used were thiourea, triethylamine, N,N-diisopropylethylamine, ammonia water, carbamide, aniline.



**Fig. S7** Fluorescence responses of **1**  $[1.0 \times 10^{-5}$  M in 5:5 (v/v) 0.01M HEPES/DMSO pH 7.4] upon addition of different species (100 equiv of species relative to **1**) (green bars) with excitation at 580 nm, and fluorescence changes of the mixture of **1** and hydrazine  $(1.0 \times 10^{-3}$  M in water) after addition of an excess of the indicated species (100 equiv relative to **1**) (red bars) with excitation at 580 nm. I<sub>660</sub> represent the emission intensity at 660 nm. Intensity means the emission intensity at 660 nm. The species used were thiourea, triethylamine, N,N-diisopropylethylamine, ammonia water, carbamide, aniline.



**Fig. S8** <sup>1</sup>H NMR spectrum of compound 4.



Fig. S9 <sup>13</sup>C NMR spectrum of compound 4.



Fig. S10 <sup>1</sup>H NMR spectrum of compound 3.







Fig. S12  $^{1}$ H NMR spectrum of compound 2.



Fig. S13 <sup>13</sup>C NMR spectrum of compound 2.



**Fig. S14** <sup>1</sup>H NMR spectrum of compound 1.



Fig. S15<sup>13</sup>C NMR spectrum of compound 1.