Electronic Supplementary Information

Cellulose nanocrystals as host matrix and waveguide materials for recyclable luminescent solar concentrators

Farsad Imtiaz Chowdhury,^a Carson Dick,^a Lingju Meng,^a Seyed Milad Mahpeykar,^a Behzad Ahvazi^b and Xihua Wang^{*a}

a. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G 2V4. Email: xihua@ualberta.ca

b. Biomass Processing & Conversion-BioResources, Alberta Innovates Technology Future, Edmonton, T6N 1E4.

*Corresponding author: Prof. Xihua Wang

Calculation of optical efficiency

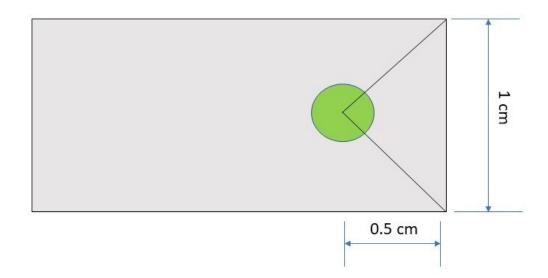


Fig. S1. A Schematic showing the collection angle of photons.

In the experiment, we extracted the photons from only one edge of the sample. This edge from which we extracted the photons has a dimension of 1 cm and when we shine light on our sample and focus on a point which is 0.5 cm away from this edge, emitted photons with a collection angle 90 degree or lower get detected by the detector.

 $\tan \Theta = 0.5/0.5$

 Θ = 45° and hence 2 Θ = 90°.

Assuming we have an isotropic emission, the optical efficiency values at 0.5 cm were multiplied by 4 and to maintain consistency, rest of the values were also multiplied by 4 which we deem as the maximum optical efficiency that can be achieved by extracting photons from four side edges of the sample.

Transmission and reflection data of un-doped CNC and APE samples

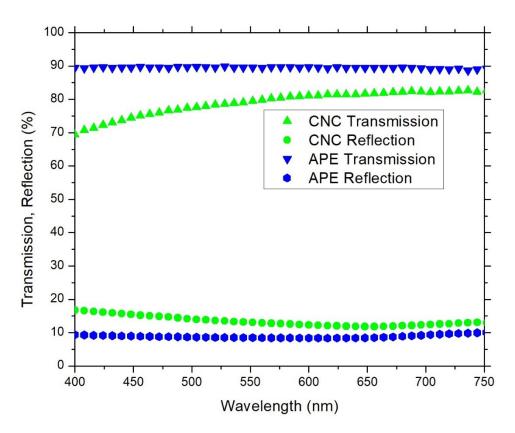


Fig. S2. Transmission and reflection data of un-doped CNC and APE samples.

Fig. S2 shows the transmission and reflection data of CNC and APE samples without the presence of dyes.