Electronic Supplementary Information

Fabrication and properties of superhydrophobic film on electroless plated magnesium alloy

Jing Yuan^{a,b}, Jihui Wang^{a, c*}, Kaili Zhang^c, Wenbin Hu^c

a. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin
University, Tianjin 300072, P R China

- b. College of Physics Electronic Information Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007, P R China
 - c. Tianjin Key Laboratory of Composite and Functional Materials, School of

Materials Science and Engineering, Tianjin University, Tianjin 300072, P R China

^{*} Corresponding author Email address: jhwang@tju.edu.cn

Fig. S1 Cross-section morphologies of sample after hydrothermal reaction for 15h under different reaction temperatures: (a) 120° C, (b) 140° C and (c) 160° C.

Fig. S2. Variation of water contact angle and sliding angle of superhydrophobic film with hydrothermal reaction time.

The XRD pattern of S1 (AZ61 magnesium alloy), the diffraction peaks at 32.2°, 34.4°, 36.6°, 47.8°, 57.4°, 63.1° and 68.7° were attributed to (100), (002), (101), (102), (110), (103) and (112) planes of α -Mg phase, but peaks at 36.2° and 40.2° corresponded to (321) and (400) planes of β -Mg₁₇Al₁₂ phase.

The FT-IR spectra of S3 $(Ni_3(NO_3)_2(OH)_4)$ reveals the existence of -OH stretching vibration (~3600 cm⁻¹), C-H bending vibration (~1380 cm⁻¹), -OH bending vibration (~647 cm⁻¹), -NO₃ bending vibrations (~996 cm⁻¹, ~1316 cm⁻¹), Ni-O vibration and Ni-O-H bending vibration (~480 cm⁻¹). In addition, the peaks observed at 1497 cm⁻¹ is assigned to the various vibrational modes of the carbonate groups originating from the adsorption of atmospheric CO₂.¹

Fig. S3 Equivalent circuit for EIS spectra of (a) AZ61 substrate, (b) Ni-P coating and (c) superhydrophobic surface.

The origin of various components of the equivalent circuit. R_s : electrolyte solution; CPE_{coat} and R_{coat} : Ni-P coating (oxide layer for AZ61 substrate); CPE_{super} and R_{super} : superhydrophobic film; CPE_{dl} and R_{ct} : double electric layer of AZ61 substrate.

	R _s	Q_{super} -Y ₀	n _{air}	R _{super}	Q_{coat} -Y ₀	<i>n</i> _{coat}	R _{coat}	$Q_{\rm dl}$ -Y ₀	n _{dl}	$R_{\rm ct}$
	$(\Omega^* cm^2)$	(A/cm ²)		$(\Omega^* cm^2)$	(A/cm ²)		$(\Omega^* cm^2)$	(A/cm ²)		$(\Omega^* cm^2)$
AZ61 substrate	13.3				1.5×10 ⁵	0.9	5.6×10 ²	10.3	0.9	1.6×10 ³
Ni-P coating	10.2				2.4×10 ²	0.8	6.1×10 ³	31.9	0.9	3.4×10 ³
Superhydrophobic flim	1.0	6.3×10 ⁻⁷	0.7	5.8×10 ⁵	4.6×10 ⁻⁷	0.7	5.0×10 ⁴	2.5×10-6	0.7	1.1×10 ⁷

Table S1 EIS fitting parameters of AZ61substrate, Ni-P coating and superhydrophobic film in 3.5%NaCl solution.

1. H.F. Zhang, M. Liu, H.S. Fan and X.D. Zhang, Mater. Lett., 2012, 75, 26-28.