## **Supplementary Information**

## Steering Photoinduced Charge Kinetics *via* Anionic Group Doping in Bi<sub>2</sub>MoO<sub>6</sub> for Efficient Photocatalytic Removal of Water Organic Pollutants

Yongxing Xing, Jing Zhang, Zhiliang Liu and Chunfang Du\*

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia,

010021, P. R. China.

E-mail: cedchf@imu.edu.cn; Fax: +86-471-4994375; Tel: +86-471-4994375



Fig. S1. Lattice volume and particle size as a function of initial molar ratios of sodium citrate to Bi(NO<sub>3</sub>)<sub>3</sub>•H<sub>2</sub>O



Fig.S2 Raman spectra of pristine BMO with different carbonate doping contents



Fig. S3 TG curves of pristine BMO with different carbonate doping contents



Fig. S4 FT-IR spectra of pristine BMO with different carbonate doping contents



Fig. S5 XRS patterns of 3C/BMO with different Pd loading contents



Fig. S6 The survey XPS spectra of pristine BMO, 3C/BMO and 0.5 % Pd-3C/BMO.

| Sample        | Bi/at % | O/at % | Mo/at % | C/at % <sup>a</sup> | Ag/at % | Au/at % | Pd/at % |
|---------------|---------|--------|---------|---------------------|---------|---------|---------|
| ВМО           | 14.807  | 47.186 | 6.872   | 0                   | -       | -       | -       |
| 3C/BMO        | 15.686  | 52.72  | 5.819   | 6.695               | -       | -       | -       |
| 0.9%Ag-3C/BMO | 16.34   | 50.493 | 6.007   | 6.812               | 1.038   | -       | -       |
| 1.2%Au-3C/BMO | 14.617  | 51.419 | 5.432   | 7.004               | -       | 0.063   | -       |
| 0.5%Pd-3C/BMO | 17.409  | 50.806 | 5.224   | 6.832               | -       | -       | 0.285   |

 Table S1 Elemental composition determined by XPS data.

<sup>a</sup> The carbonate doping content was determined by eliminating the carbon reference C 1s signal at

284.8 eV.



Fig.S7 SEM images of 1.2 % Au-3C/BMO (a, b) and 0.9 % Ag-3C/BMO (c, d).



Fig. S8 Particle size distribution determined by zeta potential measurement.

The particle size distributions of various samples are conducted in Zeta sizer Nano ZS90.



Fig. S9  $N_2$  adsorption-desorption isotherms of various samples

| <b>1</b>        |                                           |                                  |  |  |  |  |  |
|-----------------|-------------------------------------------|----------------------------------|--|--|--|--|--|
| Samples         | Specific surface area (m <sup>2</sup> /g) | Pore volume (cm <sup>3</sup> /g) |  |  |  |  |  |
| BMO             | 1.8                                       | 0.02                             |  |  |  |  |  |
| 3C/BMO          | 40.8                                      | 0.27                             |  |  |  |  |  |
| 1.2 % Au-3C/BMO | 57.0                                      | 0.25                             |  |  |  |  |  |
| 0.9 % Ag-3C/BMO | 52.3                                      | 0.24                             |  |  |  |  |  |
| 0.5 % Pd-3C/BMO | 55.6                                      | 0.28                             |  |  |  |  |  |

Table S2 Porous parameters of various samples



Fig. S10 TEM, HRTEM images and EDS spectra of 1.2 % Au-3C/BMO (a, b, e) and 0.9 % Ag-

3C/BMO (c, d, f)



Fig. S11 Density of states for Mo, Bi, and O in  $\mathrm{Bi}_2\mathrm{MO}_6$  model.



Fig. S12 Density of states for C, Mo, Bi, and O in  $CO_3^{2-}$  doped  $Bi_2MoO_6$  model.



Fig. S13 Density of states for Mo, Bi, and O in  $\mathrm{Bi}_2\mathrm{MoO}_6$  with oxygen vacancy model.



Fig. S14 Adsorption-desorption equilibrium experiments for RhB (a) and OPP (b) over various

photocatalysts.



**Fig. S15** The photocatalytic activities of pristine BMO with loaded various noble metals (a), pristine BMO and 3C/BMO with different Ag (b) and Au (c) loading contents with luminous powder of 300 W, cycle experiment of 0.5 % Pd-3C/BMO (d) with luminous powder of 500 W toward RhB under UV + visible light irradiation



**Fig. S16** The photocatalytic activities of pristine BMO, 3C/BMO as well as various noble metals loaded samples toward OPP degradation by using a bandpass filter (550 nm) with luminous power of 500 W.



**Fig. S17** Kinetic linear simulation curves of RhBphotodegradation under UV + visible light irradiation with luminous power of 300 W (a) and 500 W (b). Kinetic linear simulation curves of OPP photodegradation under UV + visible light irradiation (c) and visible light irradiation (d) with luminous power of 500 W over various samples.



Fig. S18. UV-vis absorption spectra recorded during the photocatalytic degradation of OPP over 0.5 % Pd-3C/BMO by adding various scavenger species and the relation between  $C/C_0$  and t.



Fig. S19 ESR spectra of DMPO-'OH (a) and DMPO-'O<sub>2</sub><sup>-</sup> adducts without photocatalysts in

darkness and under visible light irradiation for 30 min