#### **Electronic Supplementary Information (ESI)**

# New prenylxanthones, polyketide hemiterpenoid pigments from the endophytic fungus *Emericella* sp. XL029 and their antiagricultural pathogenic fungal and antibacterial activities

Xia Wu,<sup>a</sup> Li-Zhen Fang,<sup>c</sup> Feng-Lou Liu,<sup>d</sup> Xue-Jiao Pang,<sup>a</sup> Hai-Li Qin,<sup>a</sup> Ting Zhao,<sup>a</sup> Lu-Lin Xu,<sup>a</sup>

Deng-Feng Yang\*b and Xiao-Long Yang\*a

<sup>a</sup>Innovative Drug Research Centre (IDRC), School of Pharmaceutical Sciences, Chongqing

University (Huxi Campus), Chongqing 401331, P. R. China.

<sup>b</sup>State Key Laboratory of Enzyme Technology, National Engineering Research Centre of Non-food

Biorefinery, Guangxi Academy of Sciences, Nanning 530007, P. R. China.

<sup>c</sup>School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China

<sup>d</sup>School of Agriculture, Ningxia University, Yinchuan 750021, P. R. China;

\* To whom correspondence should be addressed. E-mail: yxl19830915@163.com; dengfengyang@163.com

## List of ESI

| Figure S1. <sup>1</sup> H NMR spectrum of 1 (CDCl <sub>3</sub> , 400 MHz)          | 4 |
|------------------------------------------------------------------------------------|---|
| Figure S2. <sup>13</sup> C NMR spectrum of 1 (CDCl <sub>3</sub> , 100 MHz)         | 4 |
| Figure S3. <sup>1</sup> H, <sup>1</sup> H COSY spectrum of 1 (CDCl <sub>3</sub> )  | 5 |
| Figure S4. HMQC spectrum of 1 (CDCl <sub>3</sub> )                                 | 5 |
| Figure S5. HMBC spectrum of 1 (CDCl <sub>3</sub> )                                 | 6 |
| Figure S6. NOESY spectrum of 1 (CDCl <sub>3</sub> )                                | 6 |
| Figure S7. HRESIMS spectrum of 1                                                   | 7 |
| Figure S8. IR spectrum of 1                                                        | 7 |
| Figure S9. UV spectrum of 1                                                        | 7 |
| Figure S10. <sup>1</sup> H NMR spectrum of 2 (CDCl <sub>3</sub> , 400 MHz)         | 8 |
| Figure S11. <sup>13</sup> C NMR spectrum of 2 (CDCl <sub>3</sub> , 100 MHz)        | 8 |
| Figure S12. <sup>1</sup> H, <sup>1</sup> H COSY spectrum of 2 (CDCl <sub>3</sub> ) | 9 |
| Figure S13. HMQC spectrum of 2 (CDCl <sub>3</sub> )                                | 9 |
| Figure S14. HMBC spectrum of 2 (CDCl <sub>3</sub> )                                |   |
|                                                                                    |   |

## Figure S15. NOESY spectrum of 2

| (CDCl <sub>3</sub> )                                                                      | 10 |
|-------------------------------------------------------------------------------------------|----|
| Figure S16. HRESIMS spectrum of 2                                                         | 11 |
| Figure S17. IR spectrum of 2                                                              | 11 |
| Figure S18. UV spectrum of 2                                                              |    |
| Figure S19. <sup>1</sup> H NMR spectrum of 3 (CDCl <sub>3</sub> , 400 MHz)                | 12 |
| Figure S20. <sup>13</sup> C NMR spectrum of 3 (CDCl <sub>3</sub> , 100 MHz)               | 13 |
| Figure S21. <sup>1</sup> H, <sup>1</sup> H COSY spectrum of <b>3</b> (CDCl <sub>3</sub> ) |    |
| Figure S22. HMQC spectrum of 3 (CDCl <sub>3</sub> )                                       | 14 |
| Figure S23. HMBC spectrum of 3 (CDCl <sub>3</sub> )                                       | 14 |
| Figure S24. NOESY spectrum of 3 (CDCl <sub>3</sub> )                                      |    |

### 

| Figure S25. HRESIMS spectrum of 3                                                  | 15 |
|------------------------------------------------------------------------------------|----|
| Figure S26. IR spectrum of 3                                                       | 16 |
| Figure S27. UV spectrum of 3                                                       | 16 |
| Figure S28. <sup>1</sup> H NMR spectrum of 4 (CDCl <sub>3</sub> , 400 MHz)         | 17 |
| Figure S29. <sup>13</sup> C NMR spectrum of 4 (CDCl <sub>3</sub> , 100 MHz)        |    |
| Figure S30. <sup>1</sup> H, <sup>1</sup> H COSY spectrum of 4 (CDCl <sub>3</sub> ) |    |
| Figure S31. HMQC spectrum of 4 (CDCl <sub>3</sub> )                                |    |
| Figure S32. HMBC spectrum of 4 (CDCl <sub>3</sub> )                                |    |
| Figure S33. NOESY spectrum of 4 (CDCl <sub>3</sub> )                               |    |
|                                                                                    | 19 |
|                                                                                    | 20 |

| Figure S34. HRESIMS spectrum of 4 | 20 |
|-----------------------------------|----|
| Figure S35. IR spectrum of 4      | 20 |
| Figure S36. UV spectrum of 4      |    |

|                                                                            | 20 |
|----------------------------------------------------------------------------|----|
| Table S1. X-ray crystallographic data of 4                                 | 21 |
| Figure S37. <sup>1</sup> H NMR spectrum of 5 (CDCl <sub>3</sub> , 400 MHz) |    |

| Figure S38. <sup>13</sup> C NMR spectrum of 5 (CDCl <sub>3</sub> , 100 MHz)               |    |
|-------------------------------------------------------------------------------------------|----|
| Figure S39. <sup>1</sup> H NMR spectrum of 6 (CDCl <sub>3</sub> , 400 MHz)                | 23 |
| Figure S40. <sup>13</sup> C NMR spectrum of 6 (CDCl <sub>3</sub> , 100 MHz)               | 23 |
| Figure S41. <sup>1</sup> H NMR spectrum of 7 (CDCl <sub>3</sub> , 400 MHz)                | 24 |
| Figure S42. <sup>13</sup> C NMR spectrum of 7 (CDCl <sub>3</sub> , 100 MHz)               | 24 |
| Figure S43. <sup>1</sup> H NMR spectrum of 8 (CDCl <sub>3</sub> , 400 MHz)                | 25 |
| Figure S44. <sup>13</sup> C NMR spectrum of 8 (CDCl <sub>3</sub> , 100 MHz)               | 25 |
| Figure S45. <sup>1</sup> H NMR spectrum of 9 (CD <sub>3</sub> OD <sub>3</sub> , 400 MHz)  |    |
| Figure S46. <sup>13</sup> C NMR spectrum of 9 (CD <sub>3</sub> OD <sub>3</sub> , 400 MHz) | 26 |
|                                                                                           |    |



Figure S1. <sup>1</sup>H NMR spectrum of 1 (CDCl<sub>3</sub>, 400 MHz)



Figure S2. <sup>13</sup>C NMR spectrum of 1 (CDCl<sub>3</sub>, 100 MHz)



Figure S4. HMQC spectrum of 1 (CDCl<sub>3</sub>)



Figure S6. NOESY spectrum of 1 (CDCl<sub>3</sub>)



Figure S9. UV spectrum of 1



Figure S11. <sup>13</sup>C NMR spectrum of 2 (CDCl<sub>3</sub>, 100 MHz)







Figure S13. HMQC spectrum of 2 (CDCl<sub>3</sub>)



Figure S15. NOESY spectrum of 2 (CDCl<sub>3</sub>)













Figure S21. <sup>1</sup>H, <sup>1</sup>H COSY spectrum of 3 (CDCl<sub>3</sub>)



Figure S23. HMBC spectrum of 3 (CDCl<sub>3</sub>)



Figure S24. NOESY spectrum of 3 (CDCl<sub>3</sub>)



Figure S25. HRESIMS spectrum of 3



Figure S27. UV spectrum of 3



Figure S28. <sup>1</sup>H NMR spectrum of 4 (CDCl<sub>3</sub>, 400 MHz)



Figure S29. <sup>13</sup>C NMR spectrum of 4 (CDCl<sub>3</sub>, 100 MHz)



Figure S31. HMQC spectrum of 4 (CDCl<sub>3</sub>)



Figure S33. NOESY spectrum of 4 (CDCl<sub>3</sub>)



Figure S36. UV spectrum of 4

| Empirical formula                           | $C_{25}H_{28}O_7$                                            |
|---------------------------------------------|--------------------------------------------------------------|
| Formula weight                              | 440.47                                                       |
| Temperature/K                               | 293                                                          |
| Crystal system                              | monoclinic                                                   |
| Space group                                 | P21                                                          |
| a/Å                                         | 6.2804(3)                                                    |
| b/Å                                         | 17.2710(6)                                                   |
| c/Å                                         | 10.3842(4)                                                   |
| α/°                                         | 90                                                           |
| β/°                                         | 101.759(4)                                                   |
| γ/°                                         | 90                                                           |
| Volume/Å <sup>3</sup>                       | 1102.72(8)                                                   |
| Z                                           | 2                                                            |
| $\rho_{calc}g/cm^3$                         | 1.327                                                        |
| µ/mm <sup>-1</sup>                          | 0.097                                                        |
| F(000)                                      | 468.0                                                        |
| Radiation                                   | Mo Ka ( $\lambda = 0.71073$ )                                |
| $2\Theta$ range for data collection/°       | 7.012 to 52.744                                              |
| Index ranges                                | $-7 \le h \le 7, -21 \le k \le 21, -8 \le l \le 12$          |
| Reflections collected                       | 7828                                                         |
| Independent reflections                     | 4482 [R <sub>int</sub> =0.0246, R <sub>sigma</sub> = 0.0495] |
| Data/restraints/parameters                  | 4482/1/305                                                   |
| Goodness-of-fit on F <sup>2</sup>           | 1.057                                                        |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0478, wR_2 = 0.1072$                                |
| Final R indexes [all data]                  | $R_1 = 0.0631, wR_2 = 0.1177$                                |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.15/-0.23                                                   |
| Flack parameter                             | 0.5(6)                                                       |

 Table S1. X-ray crystallographic data of 4



Figure S38. <sup>13</sup>C NMR spectrum of 5 (CDCl<sub>3</sub>, 100 MHz)



Figure S40. <sup>13</sup>C NMR spectrum of 6 (CDCl<sub>3</sub>, 100 MHz)



Figure S42. <sup>13</sup>C NMR spectrum of 7 (CDCl<sub>3</sub>, 100 MHz)



Figure S44. <sup>13</sup>C NMR spectrum of 8 (CDCl<sub>3</sub>, 100 MHz)



Figure S46. <sup>13</sup>C NMR spectrum of 9 (CD<sub>3</sub>OD, 100 MHz)