Synthesizing Nonstoichiometric Li_{3-3x}V_{2+x}(PO₄)₃/C as Cathode Materials for High-performance Lithium-ion Batteries by Solid State Reaction

Pingping Sun¹, Ningang Su¹, Yuanting Wang¹, Qingyu Xu^{1,2*}, Qi Fan^{3*}, Yueming

Sun³

¹ Department of Physics, Southeast University, Nanjing 211189, China

² National Laboratory of Solid State Microstructures, Nanjing University, Nanjing

210093, China

³ College of Chemistry and Chemical Engineering, Southeast University, Nanjing

211189, China

Fig. S1 HRTEM image of LVP-0.10.

A typical HRTEM image (Fig. S1) is presented to investigate the structure of LVP-0.10. Two types of lattice fringes are found in the composites: the $Li_3V_2(PO_4)_3$ lattice fringe with an interplanar spacing of 0.3794 nm that corresponds to the (210) lattice planes; and the LiVOPO₄ lattice fringe with an interplanar spacing of 0.3858 nm that corresponds to the (111) lattice planes. Fast Fourier transform (FFT) was performed in the selected crystal planes to confirm the different phases, as shown in inset. The FFT images of the selected regions show the diffraction patterns of $Li_3V_2(PO_4)_3$ and $LiVOPO_4$, respectively. Different diffraction patterns are obtained, indicating that two phases coexist in the samples. The HRTEM image confirms the $Li_3V_2(PO_4)_3$ core and $LiVOPO_4$ shell structure, similar to our previous report. [1]

Fig. S2 V2p XPS spectra of LVP-0.10 prepared by (a) sol-gel, (b) sol-gel + ball mill,(c) solid state reaction.

XPS is provided to detect the surface phase. V2p peaks of LVP-0.10 (Fig. S2) prepared by solid state reaction significantly shifts to higher binding energy, compared with that prepared by sol-gel method [2] and is close to that prepared by sol-gel with ball mill method [1]. The binding energies are consistent with those of V^{4+} in LiVOPO₄.

Active Nanomaterials	10C	20C	Cycle	References
	Specific Capacity(mAh/g)		Number	
	3-4.3V befor	e (after cycles)		
Hierarchical	117	/	/	3
$Li_3V_2(PO_4)_3/C$				
Mesoporous				
Nanowires				
Li ₃ V ₂ (PO ₄) ₃ /PEDOT	122(122)	/	100	4
composite				
Li ₃ V ₂ (PO ₄) ₃ 3D Foams	112	105		5
Ionic-Liquid-Assisted	108(102.6)	105(100)	100	6
Synthesis Li ₃ V ₂ (PO ₄) ₃				
Hierarchical Carbon	123	122(94)	4000	7
Decorated $Li_3V_2(PO_4)_3$				
Li ₃ V ₂ (PO ₄) ₃ /graphene	/	109(108)	100	8
nanocomposites				
core-shell structured	97.9(107.8)	/	300	9
$Li_3V_2(PO_4)_3@C$				
$LVP/C + RuO_2$	102.5(101)	/	100	10
Sol-gel synthesized	126	92.5	85.1	2
$Li_{3-3x}V_{2+x}(PO_4)_3/C$				
Core-shell-structured	121.5	116.3(111)	1000	1
$Li_3V_2(PO_4)_3$ - $LiVOPO_4$				
nanocomposites				
Solid state reaction	124.6	124.3(122.2)	1000	This work
synthesized Li3-				
$_{3x}V_{2+x}(PO_4)_3/C$				

Table S1. The comparison of electrochemical performance among $Li_3V_2(PO_4)_3$ nanocomposites.

Table S2. The comparison of electrochemical performance among $Li_3V_2(PO_4)_3$ nanocomposites made by different methods.

	10C	20C		
Method	Specific Capacity(mAh/g)		Cycle	References
	3-4.3V before (after cycles)		Number	
Sol-gel	126	92.5	85.1	2
Sol-gel + ball mill	121.5	116.3(111)	1000	1
Ball mill	124.6	124.3(122.2)	1000	This work

Table S3. The comparison of electrochemical kinetic parameters among $Li_3V_2(PO_4)_3$ nanocomposites prepared by different methods.

	Li diffusion	Electron	Charge transfer	
Method	coefficient	conductivity	resistance	Reference
	$D_{Li}^{+}(cm^2 s^{-1})$	$\sigma_{e}(S \text{ cm}^{-1})$	$\operatorname{R}ct\left(\Omega ight)$	
Sol-gel	1.45×10 ⁻⁹	9.54×10 ⁻⁵	92.7	2
Sol-gel+ball	1.04×10 ⁻⁹	1.77×10 ⁻⁴	50	1
mill				
Ball mill	1.84×10 ⁻⁹	1.42×10 ⁻⁴	62.4	This work

References

- [1] P. Sun, X. Wang, K. Zhu, X. Chen, X. Cui, Q. Xu, D. Su, Q. Fan, Y. Sun, RSC Adv., 2017, 7, 3101–3107.
- [2] P. Sun, S. Qin, X. Wang, R. An, Q. Xu, X. Cui, Y. Sun, S. Wang, P. Wang, Q. Fan, J. Power Sources, 2015, 293, 922–928.
- [3] Q. Wei, Q. An, D. Chen, L. Mai, S. Chen, Y. Zhao, K.M. Hercule, L. Xu, A. Minhas-Khan, Q. Zhang, *Nano Lett.*, 2014, 14, 1042–1048.
- [4] J. Kim, J.K. Yoo, Y.S. Jung, K. Kang, Adv. Energy Mater., 2013, 3, 1004–1007.
- [5] Y. Zhou, X. Rui, W. Sun, Z. Xu, Y. Zhou, W.J. Ng, Q. Yan, E. Fong, ACS Nano, 2015, 9, 4628–4635.
- [6] X. Zhang, N. Bçckenfeld, F. Berkemeier, A. Balducci, *ChemSusChem*, 2014, 7, 1710–1718.
- [7] Y. Luo, X. Xu, Y. Zhang, Y. Pi, Y. Zhao, X. Tian, Q. An, Q. Wei, L. Mai, Adv. Energy Mater. 2014, 1400107, 1-8.

- [8] H. Liu, P. Gao, J. Fang, G. Yang, Chem. Commun., 2011, 47, 9110-9112.
- [9] C. Wang, H. Liu, W. Yang, J. Mater. Chem., 2012, 22, 5281–5285.
- [10] R. Zhang, Y. Zhang, K. Zhu, F. Du, Q. Fu, X. Yang, Y. Wang, X. Bie, G. Chen,

Y. Wei, ACS Appl. Mater. Interfaces, 2014, 6, 12523-12530.