Electronic supplementary information for

First hyperpolarizabilities of $Pt(4-ethynylbenzo-15-crown-5)_2(bpy)$ derivatives with the complexation of mono-cations (Li⁺, Na⁺, K⁺) and di-cations (Mg²⁺, Ca²⁺): the development as cation detector

Hai-Ling Yu,^{a,*} Wen-Yong Wang,^b Bo Hong,^a Yan-Ling Si,^a Tian-Liang Ma, ^a and Ran Zheng^a

^aCollege of Resources and Environmental Science, Jilin Agricultural University, Changchun 130118, People's Republic of China

^bJiangSu XinHai Senior High School, Lianyungang City 222000, Jangsu, People's Republic of China

 Table S1 NPA charge distribution for the fragments (F1 - F8) of compounds L and its metal

 *Corresponding Author. E-mail addresses: jlauyu@163.com (H. L. Yu)

Compound	L	L*(Li ⁺) ₂	L*(Na ⁺) ₂	L*(K ⁺) ₂	$L^{*}(Mg^{2+})_{2}$	L*(Ca ²⁺) ₂
M ^{+/2+}		1.499	1.535	1.689	3.249	3.425
S1	-0.427	-0.299	-0.316	-0.393	-0.294	-0.375
S2	-0.427	-0.299	-0.316	-0.394	-0.294	-0.375
S3	0.384	0.456	0.455	0.457	0.518	0.513
S4	0.385	0.456	0.454	0.457	0.518	0.513
S5	-0.296	-0.286	-0.285	-0.285	-0.271	-0.280
S6	-0.296	-0.286	-0.285	-0.285	-0.271	-0.271
S7	0.303	0.322	0.322	0.322	0.345	0.344
S8	0.374	0.437	0.436	0.433	0.501	0.498

cation derivatives computed atB3LYP/6-31G**/LanL2DZ level

Table S2 First hyperpolarizability and its corresponding important tensorial component (10^{-30} esu)calculated at the CAM-B3LYP level with the ultrafine integration grid.

	L	L*(Li ⁺) ₂	L*(Na ⁺) ₂	L*(K ⁺) ₂	$L^{*}(Mg^{2+})_{2}$	L*(Ca ²⁺) ₂
β_{xxx}	3.3	0.2	-0.6	-0.6	-0.0	0.0
$eta_{_{xxy}}$	17.6	-4.5	-4.2	-4.8	-19.7	-21.9
$oldsymbol{eta}_{xyy}$	2.3	-0.3	0.1	-0.0	-0.0	-0.0
$\beta_{_{yyy}}$	54.1	15.7	16.0	15.2	2.2	1.7
$eta_{_{xzz}}$	0.0	-0.0	-0.0	-0.0	-0.0	0.0
$eta_{_{yzz}}$	1.2	0.6	0.8	0.6	0.3	0.1
β_{x}	5.7	-0.2	-0.4	-0.6	-0.0	0.0
β_y	72.9	11.8	12.6	11.0	-17.2	-20.1
β_z	-0.5	1.7	0.2	-0.4	2.5	2.3

β_{tot} 73.1 11.9 12.6 11.0 17.4 20.2	$eta_{\scriptscriptstyle tot}$	73.1	11.9	12.6	11.0	17.4	20.2	
---	--------------------------------	------	------	------	------	------	------	--

	L	L*(Li ⁺) ₂	L*(Na ⁺) ₂	L*(K ⁺) ₂	$L^{*}(Mg^{2+})_{2}$	L*(Ca ²⁺) ₂
β_{xxx}	3.3	0.2	-0.6	-0.6	-0.0	0.0
$eta_{_{xxy}}$	17.6	-4.5	-4.2	-4.8	-19.7	-21.9
$eta_{_{xyy}}$	2.3	-0.3	0.1	-0.0	-0.0	-0.0
$eta_{_{yyy}}$	54.1	15.7	16.0	15.2	2.2	1.7
$eta_{\scriptscriptstyle xzz}$	0.0	-0.0	-0.0	-0.0	-0.0	0.0
$eta_{_{yzz}}$	1.2	0.7	0.8	0.6	0.3	0.1
β_x	5.7	-0.2	-0.4	-0.6	-0.0	0.0
$oldsymbol{eta}_{y}$	72.9	11.8	12.6	11.0	-17.2	-20.1
eta_z	-0.5	1.7	0.2	-0.4	2.5	2.3
eta_{tot}	73.1	11.9	12.6	11.0	17.4	20.2

Table S3 First hyperpolarizability and its corresponding important tensorial component (10⁻³⁰ esu) calculated at the CAM-B3LYP level with the superfine integration grid.

	L	L*(Li ⁺) ₂	L*(Na ⁺) ₂	L*(K ⁺) ₂	$L^{*}(Mg^{2+})_{2}$	L*(Ca ²⁺) ₂
β_{xxx}	1.0	0.2	-0.5	-0.4	-0.0	0.0
eta_{xxy}	5.2	-5.3	-5.2	-5.8	-16.4	-17.9
$eta_{_{xyy}}$	1.0	-0.2	0.3	0.3	-0.0	-0.0
$oldsymbol{eta}_{_{yyy}}$	23.4	7.4	7.5	6.9	-1.5	-1.7
$\beta_{\scriptscriptstyle XZZ}$	-0.0	-0.0	-0.0	-0.0	-0.0	0.0
$eta_{_{yzz}}$	0.8	0.7	0.8	0.7	0.4	0.2
β_{x}	2.1	-0.0	-0.1	-0.2	-0.0	0.0
β_y	29.4	2.9	3.1	1.8	-17.5	-19.3
β_z	-0.1	1.5	1.2	0.8	2.5	2.4
$eta_{\scriptscriptstyle tot}$	29.5	3.3	3.3	2.0	17.7	19.5

Table S4 First hyperpolarizability and its corresponding important tensorial component(10⁻³⁰ esu) calculated at the LC-BLYP level.

Table S5 First hyperpolarizability and its corresponding important tensorial component(10⁻³⁰ esu) calculated at the M06-2X level.

	L	L*(Li ⁺) ₂	L*(Na ⁺) ₂	L*(K ⁺) ₂	$L^{*}(Mg^{2+})_{2}$	L*(Ca ²⁺) ₂
$\beta_{_{XXX}}$	2.9	0.2	-0.6	-0.6	-0.0	0.0
$eta_{_{xxy}}$	15.5	-5.0	-4.7	-5.3	-18.8	-20.9
$eta_{_{xyy}}$	2.1	-0.3	0.1	-0.0	-0.0	-0.0
$\beta_{_{yyy}}$	47.7	11.7	12.2	11.4	-0.4	-0.8
$\beta_{\scriptscriptstyle XZZ}$	0.0	-0.0	-0.0	-0.0	-0.0	0.0
$eta_{_{yzz}}$	1.3	0.6	0.8	0.6	0.2	0.0

β_x	5.1	-0.1	-0.5	-0.6	-0.0	0.0
$oldsymbol{eta}_y$	64.5	7.3	8.3	6.7	-19.0	-21.6
eta_z	-0.5	1.6	0.5	-0.1	2.2	2.1
$eta_{\scriptscriptstyle tot}$	64.7	7.5	8.3	6.7	19.2	21.7

Fig. S1Geometrical structures of ${\bf L}$ and its cation derivatives

Fig.S2 First hyperpolarizabilies obtained by SOS method with 100 states.