Copper doped BaMnO₃ perovskite catalysts for NO oxidation and

NO₂-assisted diesel soot removal.

Verónica Torregrosa-Rivero, Vicente Albaladejo-Fuentes*, María-

Salvadora Sánchez-Adsuar, María-José Illán-Gómez

Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, Universidad de Alicante, Alicante, Spain

* corresponding author: vicente.albaladejo@ua.es. Phone: +34965903975.

Department of Inorganic Chemistry, Faculty of Science, Universidad de Alicante, Av. Alicante s/n, 03690, San Vicente del Raspeig, Alicante, Spain Figure S1. FESEM images of a) BMC0 and b) BMC3

a) BMC0

b) BMC3

Experimental details

The morphology of catalysts was analyzed using a ZEISS Merlin VP Compact Field Emission Scaning Electron Microscopy (FESEM) equipment.

Figure S2 O₂-TPD profiles of the BaMn_{1-x}Cu_xO₃ catalysts.

Experimental details

Oxygen desorption experiments under temperature programmed conditions (O₂-TPD) were carried out by heating 20 mg of the catalyst in a quartz tube reactor at 10 °C/min from room temperature to 950 °C in He atmosphere (100 ml/min, Pt = 1 atm). The composition of the outlet gas was monitored by means of a quadrupolar mass spectrometer (QMS), PFEIFFER VACUUM model THERMOSTAR GSD301T.

Figure S3. TPR Soot conversion profiles of the BaMn_{1-x}Cu_xO₃ and platinum reference catalysts in O₂ atmosphere.

Experimental details

Soot oxidation catalysts activity was determined by Temperature Programmed Reaction (TPR) using an atmosphere containing 5 % O_2 and balance with N_2 , and a gas flow of 500 ml/min. 80 mg of the sample and 20 mg of Printex U carbon black were diluted with SiC in a mass ratio 1:4, and heated up from 25 to 800 °C, at 10 °C/min in a quartz fixed-bed reactor. The gas composition as a function of temperature was monitored by specific NDIR-UV gas analyzers for NO, NO₂, CO, CO₂ and O₂ (Rosemount Analytical Model BINOS 1001, 1004 and 100).

Figure S4. Cycles of TPR Soot conversion profiles of a) BMC0, b) BMC3 and c) Pt/Al₂O₃.

Experimental details

Cyclic soot oxidation catalysts activity was determined by Temperature Programmed Reaction (TPR) using an atmosphere containing 500 ppm NO, 5 % O_2 and balance with N_2 , and a gas flow of 500 ml/min. 80 mg of the sample and 20 mg of Printex U carbon black were diluted with SiC in a mass ratio 1:4, and heated up from 25 to 800 °C, at 10 °C/min in a quartz fixed-bed reactor. The gas composition as a function of temperature was monitored by specific NDIR-UV gas analyzers for NO, NO₂, CO, CO₂ and O₂ (Rosemount Analytical Model BINOS 1001, 1004 and 100).

	XPS surface w.t.%							
	Barium		Manganese		Copper		Oxygen	
Catalyst	XPS	Nominal	XPS	Nominal	XPS	Nominal	XPS	Nominal
BMC0	56.1	57.2	13.6	22.9	-	-	30.3	20.0
BMC1	47.9	57.0	11.3	20.5	1.4	2.6	39.5	19.9
BMC2	57.6	56.8	12.2	18.2	2.6	5.3	27.6	19.8
BMC3	47.7	56.6	10.0	15.8	2.8	7.9	39.6	19.8

Table S1. XPS surface elemental composition of the $BaMn_{1-x}Cu_xO_3$ catalysts.

Surface elemental composition of the $BaMn_{1-x}Cu_xO_3$ catalysts calculated from the peak area of O1s, $Mn2p_{3/2},\,Ba3d_{5/2}$ and $Cu2p_{3/2}$ transitions.