Supplementary Information

Surface functionalization of superparamagnetic nanoparticles by an

acid-liable polysaccharide-based prodrug for combinatorial

monitoring and chemotherapy of liver carcinoma

Chaoping Fu,^{a1} Rui-Meng Yang,^{b1} Li Wang,^b Nan-nan Li,^a Meng Qi,^b Xiang-dong Xu,^b Xin-hua Wei,^b Xin-Qing Jiang^{1b} and Li-Ming Zhang^{1a}

^a PCFM Lab and GDHPPC Lab, School of Materials Science and Engineering,

School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China..

^b Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.

¹ These authors contributed equally to this work.

[‡] Corresponding author.

Correspondence to: L.-M. Zhang, PCFM Lab and GDHPPC Lab, School of Materials Science and Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.

E-mail: jiangxinqing888@163.com (X.-Q. Jiang), ceszhlm@mail.sysu.edu.cn(L.-M.

Zhang).

Keywords:

iron oxide nanoparticles

surface functionalization

polysaccharide-based prodrug

magnetic resonance imaging

liver carcinoma

Methods

Cell culture

HepG2 cells, a hepatic cancer cell line that features an over expression of CD44 receptors on the surface, was cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% of fetal bovine serum (FBS), 100 U/ml of penicillin and 100 μ g /ml of streptomycin at 37°C in a humidified incubator with 5% of CO₂.

Figures

Fig S1.¹H NMR of HA-ADH conjugates. ¹H NMR (300 MHz, D₂O): δ 2.29 (2H, m,-NHNHCOCH₂-), 2.12 (2H, m, -CH₂NHNH₂), 1.90 (15H, bs, CH₃C(O), 1.67 – 1.36 (4H, m, -CH₂CH₂-), 3.2 – 3.9 (protons of HA disaccharide unit (H-2, H-3, H-4, H-5, H-6)), 4.55 (H-1 from N-actylglucosamine unit), 4.35 (H-1 from glucuronic acid). The degree of substitution by ADH was about 24% determined by digital integration of the NMR signals arising from the anomeric protons of HA and methylene protons of ADH.

Fig S2.¹H NMR of HA-DOX conjugates. ¹H NMR (500 MHz, D₂O) δ 8.2 (1H, -N–NH–CO–); 7.8– 7.4 (3H, m, phenyl H), 5.41 (1H, s,–CH₂OH), 4.18 (5H, s,–CH– of sugar ring and 3H, CH₃OAr), 2.29 (6H, m,–NHNHCOCH₂–), 2.16 (6H, m, –CH₂NHNH₂), 1.90 (36H, bs, CH₃C(O), 1.67 – 1.36 (12H, m, –CH₂CH₂–), 1.1 (3H, m, –CH₃ of sugar ring), 3.2 – 3.9 (protons of HA disaccharide unit (H-2, H-3, H-4, H-5, H-6)), 4.55 (H-1 from N-actylglucosamine unit), 4.35 (H-1 from glucuronic acid).

Fig S3. FTIR spectra of DOX ,NH₂-SPIOs and SPIO-HA-DOX.

Fig S4. Thermogravimetric analysis of SPIO-HA-DOX.

Fig S5. The XRD patterns of SPIOs and SPIO-HA-DOX.

Fig S6. Magnetization curves of SPIOs and SPIO-HA-DOX.