Construction of 3D Metal-Organic Frameworks Bearing Heteropolyoxometalates Units and Multi-azole Molecules and Exploration of Their Photocatalytic Activities

Chunhua Gong, Xianghua Zeng, Li Xin, Junyong Zhang* and Jingli Xie

^aCollege of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China E-mail: zhangjy@mail.zjxu.edu.cn ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China

		- ·			
Compound 1					
Cu1–N1	2.108(3)	Cu2–O3W	2.267(3)		
Cu1–N14	1.998(3)	Cu2–O3W#5	1.915(3)		
Cu1–O1	2.307(3)	Cu3–N4	2.137(3)		
Cu2–Cu2#5	3.0364(10)	Cu3–N7	1.969(3)		
Cu2–N3	1.955(3)	Cu3–N8	2.113(3)		
Cu2–N9	2.039(4)	Cu3–O3W	1.919(3)		
Cu2–O1W	2.230(3)	Cu3–O4W	2.214(4)		
Cu2–O2W	2.305(10)				
N1-Cu1-O1#1	96.74(11)	N9#5-Cu2-Cu2#5	103.41(9)		
N1-Cu1-O1	83.26(11)	N9#5-Cu2-O3W	109.60(12)		
N14#2-Cu1-O1	90.37(11)	N9#5-Cu2-O1W	160.33(14)		
N14#3-Cu1-O1	89.63(11)	N9#5-Cu2-O2W	86.0(3)		
N14#3-Cu1-N1	88.97(11)	O1W-Cu2-Cu2#5	90.83(9)		
N14#2-Cu1-N1	91.03(11)	O1W–Cu2–O3W	90.02(12)		
N3-Cu2-Cu2#5	122.51(9)	O1W–Cu2–O2W	74.3(3)		
N3–Cu2–O3W	83.47(11)	O2W-Cu2-Cu2#5	138.8(2)		
N3-Cu-2N9#5	97.93(13)	O3W-Cu3-N4	86.41(10)		
N3–Cu2–O1W	85.35(12)	O3W–Cu3–O4W	91.57(12)		
N3–Cu2–O2W	94.9(3)	O3W-Cu3-N7	172.00(12)		
O3W–Cu2–Cu2#5	39.11(6)	O3W–Cu3–N8	87.98(11)		
O3W#5-Cu2-Cu2#5	48.15(8)	N4–Cu3–O4W	94.81(13)		
O3W#5-Cu2-N3	170.13(11)	N7–Cu3–N4	91.20(12)		
O3W#5-Cu2-O3W	87.25(10)	N7–Cu3–O4W	96.24(13)		
O3W#5-Cu2-N9#5	88.35(11)	N7–Cu3–N8	92.23(12)		
O3W#5-Cu2-O1W	91.29(10)	N8–Cu3–N4	163.49(12)		
O3W–Cu2–O2W	164.4(3)	N8–Cu3–O4W	100.86(13)		

 Table S1 Selected bond lengths and angles for compounds 1 and 2.

O3W#5-Cu2-O2W	93.1(2)			
Symmetry codes : #1 1-x, 2-y, -z; #2 1-x, 1-y, 1-z; #3 1-x, 1-y, -z; #5 2-x, 2-y, 1-z.				
Compound 2				
Cu1–N8	1.99(2)	Cu2–O2W	1.95(3)	
Cu1–N10	2.00(2)	Cu2–N12	1.96(2)	
Cu1–N2	2.06(2)	Cu2–N5	2.00(2)	
Cu1–N9	2.10(2)	Cu2–O4W	2.05(3)	
Cu1–O1W	2.367(18)	Cu2–O3W	2.19(3)	
N8-Cu1-N10	176.6(9)	O2W-Cu2-N12	171.5(11)	
N8–Cu1–N2	93.9(9)	O2W-Cu2-N5	90.5(11)	
N10-Cu1-N2	89.3(9)	N12-Cu2-N5	96.2(9)	
N8–Cu1–N9	88.0(9)	O2W-Cu2-O4W	87.0(12)	
N10-Cu1-N9	88.7(9)	N12-Cu2-O4W	84.7(10)	
N2-Cu1-N9	172.6(9)	N5-Cu2-O4W	153.2(11)	
N8–Cu1–O1W	87.1(8)	O2W-Cu2-O3W	87.5(12)	
N10-Cu1-O1W	93.7(8)	N12-Cu2-O3W	94.8(10)	
N2–Cu1–O1W	97.6(8)	N5-Cu2-O3W	112.3(10)	
N9–Cu1–O1W	89.6(8)	O4W-Cu2-O3W	94.3(10)	

Fig. S2 The Powder X-ray diffraction of compounds 1 (a) and 2 (b)

Fig. S4 The blank experiments for the photocatalytic degradation of MB (a), PH(b) and RhB (c) against irradiation time (h) in absence of **1** and **2**, respectively.

Fig. S5 Plots of the concentration ratios of MB (a), PH(b) and RhB (c) against irradiation time (h) in the presence of **1** and **2**, respectively.