Metabolomic reveal the protective effect of Farfarae Flos against asthma using an OVA-induced rat model

Jing Li^{1,2}, Wei Gao³, Jining Gao⁴, Hong Li⁴, Xiang Zhang⁵, Xuemei Qin¹, Zhenyu Li^{1*}

¹ Modern Research Center for Traditional Chinese Medicine of Shanxi University, No.

92, Wucheng Road, Taiyuan 030006, Shanxi, People's Republic of China

² College of Chemistry and Chemical Engineering of Shanxi University, No. 92,

Wucheng Road 92, Taiyuan 030006, Shanxi, People's Republic of China

³ Department of Otolaryngology, Head & Neck Surgery, The First Hospital Affiliated With Shanxi Medical University, People's Republic of China

⁴ Shanxi Hospital of Integrated Traditional and Western Medicine, Taiyuan 030000,

People's Republic of China

⁵ Departments of Chemistry and Pharmacology & Toxicology, University of Louisville, KY 40292, USA

*Corresponding author: Tel.: +86-351-7018379.

E-mail address: lizhenyu@sxu.edu.cn .

The identification of the compounds by LC-MS

Compound 2, gave $[M+H]^+$ ion at m/z 431.2794 and $[M+Na]^+$ ion at m/z 453.2617 in positive ion mode, and was identified as 7β -(3'-Ethyl-cis-crotonoyloxy)-1 α -(2'methylbutyryloxy)-3(14)-dehydro-Z-notonipetranone $(C_{26}H_{38}O_5).$ It produced fragment ions at *m/z* 351.1933 [M+Na-MebuO]⁺, *m/z* 339.1933 [M+Na-MesenO]⁺, *m/z* 255.1352 [M+Na-MesenO-Mebu]⁺, *m/z* 237.1252 [M+Na-MesenO-MebuO]⁺, *m/z* 215.1433 [M+H-MesenO-MebuO]⁺, m/z 173.0963 in MS² spectra, and its possible fragment pathway was shown in Fig. S9A. The identification of the compound 2 was further confirmed by comparison with the authentic standard. Compounds 5 showed the same adduct ion at m/z at 431.2794 [M+H]⁺ and 453.2617 [M+Na]⁺, suggesting the same molecular formula of C₂₆H₃₈O₅. Thus, it was an double bond isomer of 5. identified 7β -(3'-Ethyl-cis-crotonoyloxy)-1 α -(2'compound and as methylbutyryloxy)-3(14)-dehydro-*E*-notonipetranone. Compound **3** showed [M+H]⁺ ion at m/z 391.2478, and was identified as tussilagone by comparing with the standard compound. Compound 6 exhibited $[M+H]^+$ ion at m/z 491.3003 and $[M+Na]^+$ ion at m/z 513.2819, which was 100 Da than that of tussilagone. As C-1 was usually substituted by a MebuO group, thus, compound 6 was tentatively identified as 14acetoxy-7 β -(3'-ethyl cis-crotonoyloxy) -lα-(2'-methyl butyryloxy)-notonipetranone. Compound 8 gave $[M+H]^+$ ion at m/z 507.2949 and $[M+Na]^+$ ion at m/z 529.2769 and produced predominant fragment ions at m/z 447.2741 [M+H-OAC]⁺, m/z431.2792 [M+H-OAC-O]⁺, *m/z* 347.2215 [M+H-OAC-O-Mebu]⁺, *m/z* 317.2110 $[M+H-OAC-O-MesenO]^+$, m/z 233.1535 $[M+H-OAC-O-MesenO-Mebu]^+$ in MS² spectra, and was identified as tussilagolactone. The possible fragment pathway for compound 8 was shown in Fig. S9B. Compound 9 showed protonated molecule $[M+H]^+$ at m/z 345.2061 in positive MS spectra, suggesting a possible molecular formula of C₂₁H₂₈O₄. It was 162 Da smaller than compound 8, which was in agreement with a MebuO at C-1 and an AcO group at C-3, thus, it was tentatively identified as 7β-(3'-ethylcis-crotonoyloyx)-5,6-dehydro-3,14-dehydro-Z-notonipetralactone.

For the standard available compound **1**, it was identified by comparing retention time and accurate mass and identified as 2,2-dimethyl-6-acetylchromanone (Fig. S9C).

No.	Metabolite	Assignment	δ 1H multiplicity
1		CH3	1.50 (s)
		-COCH3	2.60 (s)
	2,2-dimethyl-6-acetylchromanone	2-H	2.78 (s)
		8-H	7.00 (d, 8.8 Hz)
		7 - H	8.14 (dd, 2.4, 8.0 Hz)
		5-H	8.44 (d, 2.4 Hz)
		CH3-4"	0.88 (t, 7.4 Hz)
		CH3-5'	1.07 (t, 7.5 Hz)
	7β-(3-Ethyl-ciscrotonoyloxy)-1α-(2-	CH3-5"	1.13 (d, 6.6 Hz)
2	methylbutyryloxy)-3(14)-dehydro-Z-	CH3-6'	2.15 (s)
	notonipetranone	CH-10a	4.80 (s)
		CH-10b	5.17 (s)
		CH-14	6.38 (q, 6.6 Hz)
		CH3-13	0.78 (d, 6.6 Hz)
		CH3-12	0.98 (d, 6.6 Hz)
		CH3-5'	1.08 (t, 7.3 Hz)
		CH3-15	1.22 (d, 6.7 Hz)
2	Tussilagone	OAc	2.11 (s)
3	Tussnagone	CH3-6'	2.15 (s)
		CH-10a	4.79 (s)
		CH-10b	5.14 (s)
		CH-7	5.58 (brt, 2.3 Hz)
		CH-2'	5.63 (s)
		CH-1	5.86 (d, 12.5)
		CH2-14	6.08 (S)
	1β,8-bisangeloyloxy -3β,4β-epoxybisabola- 7(14),10-diene	CH3-15	1.46 (S)
4		CH2-3'	6.06 (qq, 1.5,7.0)
		CH2-3"	6.06 (qq, 1.5,7.0)
		CH3-5'	1.89 (qq, 1.5,1.5)
		CH3-5"	1.91 (qq, 1.5,1.5)
		CH3-4"	0.88 (t, 7.4 Hz)
		CH3-5'	1.07 (t, 7.5 Hz)
	7β-(3-Ethyl-ciscrotonoyloxy)-1α-(2-	CH3-5"	1.13 (d, 6.6 Hz)
5	methylbutyryloxy)-3(14)-dehydro-E-	CH3-6'	2.15 (s)
	notonipetranone	CH-10a	4.80 (s)
		CH-10b	5.17 (s)
		CH-14	6.70 (q, 6.6 Hz)

Table S1 ¹H NMR assignments of major metabolites from the petroleum ether extract of FF.

		CH-1	5.45 (d, 3.0)
	14-acetoxy-7β-(3'-Ethyl-ciscrotonoyloxy)-1α-(2'- methylbutyryloxy)-notonipetranone	CH3-12	1.00 (d, 6.6 Hz)
		CH3-13	0.82 (d, 6.6 Hz)
		CH2-14	5.16 (m)
6		CH3-15	1.23 (d, 6.0)
		CH3-5'	1.07 (t, 7.8)
		CH3-6'	2.10 (S)
		CH3-4"	0.89 (t, 7.8)
		CH3-5"	1.15 (t, 7.8)
		CH-7	5.57 (t, 3.0)
	14-acetoxy-7β-angeloyloxy-notonipetranone	CH3-12	0.98 (d, 6.9 Hz)
7		CH3-13	0.78 (d, 6.9 Hz)
/		CH3-15	1.23 (d, 6.0)
		CH3-4'	0.89 (d, 1.1)
		CH3-5'	2.15 (d, 1.1)

No.	t _R	Molecular	Selected ion	Experimental	Theoretical	Error (ppm)	MS/MS	Identification
		Formula					fragmentaion	
1	1.211	C13H14O3	$[M+H]^{+}$	219.10179	219.10157	1	177.0910	2,2-dimethyl-6-
							163.0389	acetylchromanone
2	8.930	C26H38O5	$[M+H]^{+}$	431.27942	431.27920	0.508	351.1933	7β-(3'-Ethyl-cis-
			[M+Na] ⁺	453.26178	453.26137	1.400	339.1933	crotonoyloxy)-1α-
							255.1352	(2'-
							237.1252	methylbutyryloxy
							215.1433)-3(14)-dehydro-
							173.0963	Z-notonipetranone
							137.0578	
3	7.94	C23H34O5	$[M+H]^{+}$	391.24789	391.24790	-0.027	331.2270	Tussilagone
							218.1301	-
							217.1590	
							175.1482	
							133.1014	
5	10.413	C26H38O5	$[M+H]^{+}$	431.27942	431.27920	0.508	351.1931	7β-(3'-Ethyl-cis-
			[M+Na] ⁺	453.26178	453.26137	1.400	339.1933	crotonoyloxy)-1α-
							255.1351	(2'-
							237.1250	methylbutyryloxy
							215.1433)-3(14)-dehydro-
							173.0963	<i>E</i> -
							137.0578	notonipetranone
6	6.071	C28H42O7	$[M+H]^{+}$	491.30033	491.30033	1.099	453.2612	14-acetoxy-7β-

TableS2 Chemical constituents identified in extracts from the petroleum ether extract of FF.

			[M+Na] ⁺	513.28198	513.30087	2.290	351.1926	(3'-ethyl cis-
							339.1928	crotonoyloxy) -lα-
							255.1349	(2'-methyl
							237.1246	butyryloxy)-
							215.1432	notonipetranone
							173.0958	
							137.0573	
							125.0573	
3	4.962	$C_{28}H_{42}O_8$	$[M+H]^+$	507.29498	507.29587	1.233	447.2741	tussilagolactone
							431.2792	
							347.2215	
							317.2110	
							233.1535	
)	2.936	$C_{21}H_{28}O_4$	$[M+H]^+$	345.20618	345.20604	0.4	217.1587	7β-(3'-ethylcis-
								crotonoyloyx)-
								5,6-dehydro-3,14-
								dehydro-Z-
								notonipetralacton
								e

No.	Metabolites	¹ H chemical shift (multiplicity)	No.	Metabolites	¹ H chemical shift (multiplicity)
1	Isoleucine	$0.95(d)^a$, 1.01(d)	22	Choline	3.2(s)
2	Leucine	0.97(t),	23	GPC ^b	3.22(s), 3.63(m)
3	Valine	0.99(d), 1.05(d)	24	PC ^b	3.23(s), 3.61(t)
4	$3-HB^b$	1.20(d), 2.31(dd) ,2.41(dd)	25	PE ^b	3.23(t), 3.99(m)
5	Lactate	1.33(d), 4.12(q)	26	Taurine	3.27(t), 3.43(t)
6	lysine	1.49(m), 1.72(m), 1.92(m)	27	Betaine	3.27(s), 3.90(s)
7	Alanine	1.49(d)	28	scyllo-inositol	3.36(s)
8	Arginine	1.70(m), 1.92(m)	29	Methyl phosphate	3.47(d)
9	Ornithine	1.75(m), 1.93(m)	30	Adenosine	6.10(d), 8.24(s), 8.35(s)
10	Acetate	1.93(s)	31	β-glucose	4.65(d)
11	Glutamate	2.05(m), 2.34(m), 3.75(m)	32	Glycine	3.56(s)
12	Methionine	2.14(s), 2.14(m), 2.64(t), 3.85(m)	33	α-glucose	5.24(d)
13	Glutamine	2.15(m), 2.44(m), 3.77(m)	34	Cytidine	5.91(d), 6.07(d), 7.85(d)
14	GSSG ^b	2.17(m), 2.54(m), 2.95(m), 3.25(m)	35	Uracil	5.81(d), 7.55(d)
15	Ethanolamine	3.15(t), 3.84(t)	36	Fumarate	6.53(s)
16	Succinate	2.40(s)	37	Tyrosine	6.91(d), 7.20(d)
17	Pyruvate	2.37(s)	38	Phenylalanine	7.33(d), 7.43(t)
18	Aspartate	2.67(dd), 2.82(dd)	39	Niacinamide	7.60(dd), 8.26(d), 8.72(d), 8.94(s)
19	DMA ^b	2.72(s)	40	Xanthine	7.91(s)
20	TMA ^b	2.88(s)	41	Hypoxanthine	8.20(s), 8.22(s)
21	Creatine	3.04(s), 3.94(s)	42	Formate	8.46(s)

Table S3 ¹H NMR assignments of major metabolites from rat lung.

^aMultiplicity for ¹H resonances: s: singlet, d: doublet, t: triplet, m: multiplet, dd: doublet of doublet.
^bKeys: GSSG, glutathione disulfide; 3-HB, 3-hydroxybutyrat; DMA, dimethylamine; TMA, trimethylamine; GPC, glycerophosphocholine; PC, phosphocholine; PE, phosphoethanolamine;,

Figure S1 Typical ¹H NMR spectra of PEFF of FF.

Figure S2 LC-MS chromatograms of PEFF of FF.

Figure S3 Histopathological photomicrographs of trache, and C mean control group, M mean model group, DEX mean dexamethasone group, LD mean low dose group, MD mean middle dose group, and HD mean high dose group.

Figure S4 Quantification of inflammatory cytokines in serum as determined by ELISA. The statistical significance of differences between model group and other groups (n=6) are indicated as p<0.05 (*) and p<0.01 (**).

Figure S5 Representative ¹H NMR spectra of lung samples obtained from control group of rats.

Figure S6 PCA (A) score plots, permutation test model validation plots (B), OPLS-DA (C) score plots, , and S-plot (D) based on ¹H-NMR data of lung homogenates from the control

and model groups (n=6).

Figure S7 Quantification of metabolites indentified of lung homogenates of PEFF (n=6).

Figure S8 Summary of pathway analysis with MetPA.

Figure S9 The possible fragment pathways of 7β -(3'-Ethyl-cis-crotonoyloxy)-1 α -(2'-methylbutyryloxy)-3(14)-dehydro-*Z*-notonipetranone (A), tussilagolactone (B), 2,2-dimethyl-6-acetylchromanone(C).