Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

New cyclometalated Ir(III) complexes with NCN pincer and mesophenylcyanamide BODIPY ligands as efficient photodynamic therapy agents

Leila Tabrizi^{*a,b}, Hossein Chiniforoshan ^{*b}

^a School of Chemistry, National University of Ireland, Galway, University Road, Galway, Ireland

^b Department of Chemistry, Isfahan University of Technology, Isfahan, Iran

Corresponding author: Leila Tabrizi; Email: LEILA.TABRIZI@nuigalway.ie

Corresponding author: H. Chiniforoshan; Email: Chinif@cc.iut.ac.ir

Fig. S1. ¹H NMR spectrum of ligand Pcyd- BODIPY (DMSO-*d*₆).

Fig. S2. ¹H NMR spectrum of complex 1 (DMSO- d_6).

Fig. S3. ¹H NMR spectrum of complex **2** (DMSO- d_6).

Fig. S4. ¹³C NMR spectrum of ligand Pcyd- BODIPY (DMSO-*d*₆).

Fig. S5. ¹³C NMR spectrum of complex 1 (DMSO- d_6).

Fig. S6. ¹³C NMR spectrum of complex 2 (DMSO- d_6).

Fig. S7. TOF MS spectrum of ligand Pcyd- BODIPY.

Fig. S8. TOF MS spectrum of complex 1.

Fig. S9. TOF MS spectrum of complex 2.

Figure. S10. UV/Vis spectra of complexes 1 and 2 in CH₃CN and PBS at 298 K.

Figure. S11. Emission spectra of complexes 1 and 2 in CH₃CN and PBS at 298 K.

Figure. S12. Photobleaching fluorescent intensity of complexes **1** and **2** under continuous irradiation (500 nm) in Tris-HCl buffer (5 mM Tris, 50 mM NaCl, pH = 7.4).

Fig. S13. LC-UV traces of plasma incubated with complexes 1 and 2 (20 μ M, 37 °C) at t = 0 and 72 h. (Diazepam was used as internal standard).

Complex	UV/Vis λ [nm]	Emission ^[a] λ [nm]	$(\Phi_{em})^{[b]}$	Lifetimes [ns] ^[c]
1	ACN: 350, 477, 541	ACN: 588	1.98	702
	PBS: 349, 478, 543	PBS: 587		
2	ACN: 358, 463, 526	ACN: 598	2.13	728
	PBS: 355, 465, 528	PBS: 599		

 Table S1. Photophysical data of complexes 1 and 2.

[a] Emission spectra recorded in ACN (acetonitrile).

[b] Φ_{em} refers to the luminescence quantum yield and were calculated according to literature procedures. *

[c] Lifetimes evaluated ACN (acetonitrile).

* G. A. Crosby and J. N. Demas, J. Phys. Chem. 1971, 75, 991-1024.

	1	2
PBS (indirect)	2%	3%
ACN (direct)	79%	92%
ACN (indirect)	72%	88%

Table S2. Singlet oxygen quantum yields upon irradiation at 500 nm.

	1	2
t = 0 h	8.92	9.58
t = 72 h	8.88	9.52

 Table S3. Ratio of peak areas of complex/diazepam