Supplemental Information for

V-VO₂ Core-shell Structure for Potential Thermal Switching

Keshab Dahal^a, Qian Zhang^{a,b}, Yumei Wang^{a,c}, Ishwar Kumar Mishra^a and Zhifeng Ren^{a*}

^aDepartment of Physics and TcSUH, University of Houston, Houston, Texas 77204, USA

^bDepartment of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China

^cBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China

*To whom correspondence should be addressed: <u>zren@uh.edu</u>

This file includes:

Fig. S1, Fig. S2 and Fig. S3.

Fig. S1: Reported (a) thermal conductivity, and (b) electrical conductivity of different VO₂

Fig. S2: XRD pattern of polished surface of V bar sample annealed at 350 °C + 380 °C + 425 °C for 7+7+7 hour.

Fig. S3: SEM image of V-VO₂ sample annealed at 350 °C + 380 °C + 425 °C for 7+7+7 hour, showing the isolation of V particle separated by VO₂.