Supporting Information

Oxidative Addition/Cycloaddition of Triflamide to N-Allyltriflamide and N,N-Diallyltriflamide

(RSC Advances)

Bagrat A. Shainyan*, Vera V. Astakhova, Anton S. Ganin, Mikhail Yu. Moskalik, Irina V. Sterkhova

Email: <u>bagrat@irioch.irk.ru</u>

List of the contents

		Page
1.	General methods	3
2.	Synthetic procedures	4-7
	1. Synthesis of compound 6	4
	2. Synthesis of compound 7	4
	3. Synthesis of compounds 8-13	5-8
3.	Single crystal X-ray structure determinations	9
4.	Figure 1. Molecular structure of compound 7	10
5.	Table 1. Crystal Data, Details of Intensity Measurements, and Structure Refinement	11
	for compound 7	
6.	Table 2. Selected bond lengths, bond and torsion angles in compound 7	12
7.	Figure 2. Moleculare structure of compound 10	13
8.	Table 3. Crystal Data, Details of Intensity Measurements, and Structure Refinement	14
	for compound 10	
9.	Table 4. Selected bond lengths, bond and torsion angles in compound 10	15
10.	Figure 3. Molecular structure of compound 11	16
11.	Table 5. Crystal Data, Details of Intensity Measurements, and Structure Refinement	17
	for compound 11	
12.	Table 6. Selected bond lengths, bond and torsion angles in compound 11	18
13.	Figure 4. ¹ H NMR spectrum of compound 6	19
14.	Figure 5. ¹³ C NMR spectrum of compound 6	20
15.	Figure 6. ¹⁹ F NMR spectrum of compound 6	21
16.	Figure 7. FT-IR spectrum of compound 6	22
17.	Figure 8. ¹ H NMR spectrum of compound 7	23

18.	Figure 9. ¹³ C NMR spectrum of compound 7	24
19.	Figure 10. ¹⁹ F NMR spectrum of compound 7	25
20.	Figure 11. FT-IR spectrum of compound 7	26
21.	Figure 12. ¹ H NMR spectrum of compound 8	27
22.	Figure 13. ¹³ C NMR spectrum of compound 8	28
23.	Figure 14. ¹⁹ F NMR spectrum of compound 8	29
24.	Figure 15. FT-IR spectrum of compound 8	30
25.	Figure 16. ¹ H NMR spectrum of compound 9	31
26.	Figure 17. ¹³ C NMR spectrum of compound 9	32
27.	Figure 18. ¹³ C NMR (<i>J-modulation</i>) spectrum 9	33
28.	Figure 19. ¹⁹ F NMR spectrum of compound 9	34
29.	Figure 20. FT-IR spectrum of compound 9	35
30.	Figure 21. ¹ H NMR spectrum of compound 10	36
31.	Figure 22. ¹³ C NMR spectrum of compound 10	37
32.	Figure 23. ¹⁹ F NMR spectrum of compound 10	38
33.	Figure 24. FT-IR spectrum of compound 10	39
34.	Figure 25. ¹ H NMR spectrum of compound 11	40
35.	Figure 26. ¹³ C NMR spectrum of compound 11	41
36.	Figure 27. ¹⁹ F NMR spectrum of compound 11	42
37.	Figure 28. FT-IR spectrum of compound 11	43

General methods:

IR spectra were taken on Varian 3100 FT-IR and Bruker Vertex 70 spectrophotometers in KBr. NMR spectra were registered on a Bruker DPX-400 spectrometer with working frequencies 400 (¹H), 100 (¹³C) and 376 MHz (¹⁹F) in CD₃CN or CDCl₃, chemical shifts are given with respect to TMS (¹H, ¹³C) and CCl₃F (¹⁹F). Elemental analysis on was performed on a CHN-analyzer Thermo-Finnigan Flash EA (Milan, Italy). The reactions were monitored by TLC on silica plates 60 F-254, eluents – hexane:ether = 1:1 or hexane:ether:acetone = 2:3:1. The reaction products were separated by column chromatography using coarse (Alfa Aesar 0.060-0.200 mm) or fine silica (Fluka 0.04-0.063 mm). Melting points were determined on a Boetius apparatus (VEB Analytik).

Synthetic procedures:

1. Synthesis of compounds 6

N,N',N''-Propane-1,2,3-triyltris(triflamide):

To 1.20 g (8 mmol) of trifluoromethanesulfonamide and 3.61 g (24 mmol) of NaI 80 ml of CH₃CN was added. To this solution, 1.10 ml (8 mmol) of N-allyltriflamide was added, the mixture was cooled to -30° C, and 2.75 ml (24 mmol) of *t*-BuOCl was added dropwise. The reaction was carried out during 24 h in argon atmosphere in the dark. After completion, the solvent was removed under reduced pressure, the residue dissolved in 80 ml of diethyl ether, treated with 80 ml of aqueous Na₂S₂O₃, the extract dried over CaCl₂. The solvent was removed in vacuum, dark-brown residue (~2.0 g) placed in a column with coarse silica and eluted with hexane to separate tarry admixtures, then with hexane–ether =1:1 and pure ether to afford (1.93 g 100%) of product **5**, a white powder, m. p. 186°C. IR (KBr, *v*/cm⁻¹): br. 3319, 1457, 1382, 1233, 1196, 1145, 1080, 1005, 950, 879, 817, 610, 511, 453. ¹H NMR (CD₃CN) δ : 7.01 br.s. (3H, NH), 3.73 m (CH), 3.46 d.d. (2H, CH₂, *J* 14.8, 4.8 Hz), 3.34 d.d. (2H, CH₂, *J* 14.6, 7.3 Hz). ¹³C NMR (CD₃CN) δ : 120.4 (q, 2CF₃, *J* 320.8 Hz), 120.2 (q, CF₃, *J* 320.0 Hz), 56.7 (CH), 45.7 (2CH₂). ¹⁹F NMR (CD₃CN) δ _F: -77.5 (2CF₃), -77.7 (CF₃). Found (%): C, 15.11; H, 1.95; N, 8.39; S 19.69; F 35.20. Calc. for C₆H₈F₉N₃O₆S₃ (%): C, 14.85; H, 1.66; N, 8.66; S 19.82; F 35.23.

2. Synthesis of compounds 7

2,5-Bis(chloromethyl)-1,4-bis[(trifluoromethyl)sulfonyl]piperazine (7):

To 8 mmol of arenesulfonamide **3a–d** or trifluoroacetamide **4** and 3.57 g (24 mmol) of NaI 80 ml of CH₃CN was added. To this solution, 1.10 ml (8 mmol) of N-allyltriflamide was added, the mixture was cooled to -30° C, and 2.72 ml (24 mmol) of *t*-BuOCl was added dropwise. The reaction was carried out during 24 h in argon atmosphere in the dark. After completion, the solvent was removed under reduced pressure, the residue dissolved in 80 ml of diethyl ether, treated with 80 ml of aqueous Na₂S₂O₃, the extract dried over CaCl₂. The solvent was removed in vacuum, dark-brown residue (~2.63 g) placed in a column with coarse silica and eluted with hexane, then with hexane–ether = 1:1 and pure ether. From ethereal extract unreacted

arenesulfonamide or trifluoroacetamide was recovered. From hexane extract product 7 was obtained. White powder, m. p. 188°C. IR (KBr, v/cm⁻¹): 2982, 2262, 1454, 1389, 1333, 1293, 1231, 1193, 1143, 1101, 1054, 1005, 941, 857, 807, 758, 652, 585, 493. ¹H NMR (CD₃CN) δ : 4.31-4.19 m (2CH), 4.02 d (2H, CH<u>H^A</u>, *J* 14.9 Hz), 3.88 d.d (2H, CH₂Cl, *J* 11.4, 9.6 Hz), 3.74 d.d (2H, CH₂Cl, *J* 11.7, 5.9 Hz), 3.65 d.d (2H, CH<u>H^B</u>, *J* 14.9, 3.6 Hz). ¹³C NMR (CD₃CN) δ : 120.1 (q, CF₃, *J* 321.2 Hz), 55.0 (2CH), 43.0 (2CH₂Cl), 40.4 (2CH₂). ¹⁹F NMR (CD₃CN) $\delta_{\rm F}$: - 76.0. Mass spectrum, *m/z* (*I*_{rel}, %): 446 (0.3) [*M*]⁺, 397 (100) [*M*–CH₂Cl]⁺, 313 (3.9) [*M*–CF₃SO₂]⁺, 263 (84.6) [*M*–CH₂Cl–CF₃SO₂]⁺, 131 (26.1) [264–CF₃SO₂]⁺, 95 (36.7) [131–HCl]⁺, 90 (33.3) [131–C₃H₅]⁺, 69 (54.5) [CF₃]. Found (%): C, 21.43; H, 2.10; N, 6.02; Cl 15.86%. Calc. for C₈H₁₀Cl₂F₆N₂O₄S₂ (%): C, 21.49; H, 2.25; N, 6.26; Cl 15.86%.

3. Synthesis of compounds 8–11

<u>1,1,1-Trifluoro-*N*-(2-iodo-3-{[(trifluoromethyl)sulfonyl]amino}propyl)-*N*-prop-2-en-1-ylmethanesulfonamide (8):</u>

 $\underline{1,1,1}-Trifluoro-N,N-bis(2-iodo-3-\{[(trifluoromethyl)sulfonyl]amino\} propyl) methanesulfonamide (9):$

3,7-Diiodo-1,5-bis[(trifluoromethyl)sulfonyl]-1,5-diazocane (10):

3,7,9-Tris[(trifluoromethyl)sulfonyl]-3,7,9-triazabicyclo[3.3.1]nonane (11):

To 3.87 g (26 mmol) of trifluoromethanesulfonamide and 11.69 g (39 mmol) of NaI 80 ml of CH₃CN was added. To this solution, 2.35 ml (13 mmol) of N,N-diallyltriflamide was added, the mixture cooled to -30° C and 8.86 ml (78 mmol) of *t*-BuOCl was added dropwise. The reaction was carried out during 24 h in argon atmosphere in the dark. Then, the solvent was removed at a

reduced pressure, the residue dissolved in 80 ml of diethyl ether and treated with 80 ml of aqueous Na₂S₂O₃. The extract was dried over CaCl₂, the solvent removed in vacuum, dark-red residue (~3.5 g) washed with chloroform (3×15 ml) to obtain ~2.0 g of viscous liquid residue and ~1.5 g of crystalline residue, which was crystallized from minimal amount of chloroform. The precipitated crystals were filtered and dried to give 0.40 g (9%) of product **11** as colorless crystals with m.p. 283°C. From the filtrate, the solvent was removed in vacuum, the crystalline residue washed with ether to give 0.85 g (16%) of product **10** as a white powder, m.p. 253°C. The remained viscous liquid (~2.0 g) was dissolved in hot hexane and cooled to give two layers: ~1.1 g of brown viscous layer and 0.9 g of transparent liquid of purple color. Viscous brown fraction was purified on a column with coarse silica with hexane and hexane–methylene chloride = 3:1 as eluents to obtain 0.91 g (21%) of product **8**, light-brown liquid. Similarly, the second purple fraction was purified on a column with coarse silica with the same eluents to obtain 0.59 g (9%) of product **9** as a colorless liquid.

1,1,1-Trifluoro-*N*-(2-iodo-3-{[(trifluoromethyl)sulfonyl]amino}propyl)-*N*-prop-2-en-1-ylmethanesulfonamide (8). IR (KBr, ν /cm⁻¹): br. 3300, 2936, 1646, 1432, 1391, 1324, 1280, 1224, 1192, 1133, 1051, 990, 937, 914, 862, 787, 745, 708, 649, 594, 499. ¹H NMR (CDCl₃) δ: 5.90–5.77 m (1H, C<u>H</u>=CH₂), 5.47–5.38 m (2H, CH=C<u>H₂</u>), 4.54–4.45 m (1H, CHI), 4.20 d.d (1H, NC<u>H</u>^{*B*}CHI, *J* 15.4, 6.7 Hz), 4.09–3.94 m (2H, NHC<u>H</u>₂CHI), 3.90–3.81 m (2H, C<u>H</u>₂CH=CH₂), 3.70 d.d (1H, NC<u>H</u>⁴CHI, *J* 15.4, 7.6 Hz). ¹³C NMR (CDCl₃) δ: 119.9 (q, CF₃, *J* 323.3 Hz), 130.6 (CH), 122.2 (CH₂), 52.7 (<u>CH₂</u>CHI), 52.4 (<u>CH₂</u>CHCH₂), 47.7 (CH₂NH), 26.0 (CHI). ¹⁹F NMR (CDCl₃) δ_F: –75.2. Found (%): C, 19.57; H, 2.70; N, 5.15; S 12.23; F 22.15; I 24.60. Calc. for C₈H₁₁F₆IN₂O₄S₂ (%): C, 19.06; H, 2.20; N, 5.56; S 12.72; F 22.61; I 25.17.

1,1,1-Trifluoro-*N*,*N*-bis(2-iodo-3-{[(trifluoromethyl)sulfonyl]amino}propyl)methanesulfonamide (9). IR (KBr, ν/cm^{-1}): br. 3301, 2950, 2858, 1435, 1392, 1324, 1264, 1222, 1196, 1131, 1058, 982, 916, 857, 784, 740, 706, 599, 497. ¹H NMR (CDCl₃) δ : 4.63–4.55 m (2H, C<u>H</u>I, first diastereoisomer), 4.54–4.44 m (2H, C<u>H</u>I, second diastereoisomer), 4.18–4.08 m (4H, NHC<u>H</u>₂CHI, first diastereomer), 4.05–3.95 (4H, NHC<u>H</u>₂CHI, second diastereomer), 3.92–3.73 (8H, NC<u>H</u>₂CHI in the two diastereomers). ¹³C NMR (CDCl₃) δ : 119.6 (q, CF₃, *J* 323.4 Hz), 119.5 (q, CF₃, *J* 323.4 Hz), 56.0 (CH₂N), 55.7 (CH₂N), 47.8 (CH₂NH), 25.7 (CHI), 25.5 (CHI). ¹⁹F NMR (CDCl₃) $\delta_{\rm F}$: –74.1. Found (%): C, 14.28; H, 1.34; N, 4.90; S 11.84; F 21.38; I 33.12. Calc. for C₉H₁₂F₉I₂N₃O₆S₃ (%): C, 13.87; H, 1.55; N, 5.39; S 12.35; F 21.94; I 32.57.

3,7-Diiodo-1,5-bis[(trifluoromethyl)sulfonyl]-1,5-diazocane (10). IR (KBr, *ν*/cm⁻¹): 1631, 1456, 1395, 1307, 1221, 1197, 1130, 1001, 862, 801, 777, 734, 661, 591, 496, 423. ¹H NMR (CD₃CN) δ: 4.57 m (2H, C<u>H</u>I), 4.27 d (4H, C<u>H</u>₂N, *J* 15.4 Hz), 3.85 d (2H, C<u>H</u>₂N, *J* 15.7 Hz), 3.82 d (2H, C<u>H</u>₂N, *J* 15.7 Hz). ¹³C NMR (CD₃CN) δ: 117.8 (q, CF₃, *J* 324.0 Hz), 60.7 (CH₂N),

25.2 (CHI). ¹⁹F NMR (CDCl₃) $\delta_{\rm F}$: -73.7. Mass spectrum, *m/z* (*I*_{rel}, %): 630 (0.2) [*M*]⁺, 503 (50) [M–I]⁺, 375 (12) [503–HI]⁺, 243 (42) [503–HI–CF₃SO₂]⁺, 69 (62) [CF₃]⁺, 41 (100) [CH₂CHCH₂]⁺. Found (%): C, 15.70; H, 1.48; N, 4.48; S 10.58; F 18.35; I 40.04. Calc. for C₈H₁₀F₆I₂N₂O₄S₂ (%): C, 15.25; H, 1.60; N, 4.45; S 10.18; F 18.09; I 40.28.

3,7,9-Tris[(trifluoromethyl)sulfonyl]-3,7,9-triazabicyclo[3.3.1]nonane (11). IR (KBr, ν/cm^{-1}): 1641, 1401, 1336, 1235, 1189, 1119, 1099, 1054, 990, 947, 909, 770, 734, 666, 590, 462. ¹H NMR (CD₃CN) δ : 4.32 m (2H, C<u>H</u>I), 4.13 d (4H, C<u>H</u>₂N, *J* 13.2 Hz), 3.61 d (4H, C<u>H</u>₂N, *J* 13.0 Hz). ¹³C NMR (CD₃CN) δ : 119.0 (q, CF₃, *J* 323.2 Hz), 118.4 (q, CF₃, *J* 320.2 Hz), 49.8 (CHN), 49.3 (CHN), 30.6 (CH₂N). ¹⁹F NMR (CDCl₃) δ_{F} : -75.3 (CF₃NCH), -78.3 (CF₃NCH₂). Mass spectrum, *m/z* (*I*_{rel}, %): 523 (2) [M]⁺, 390 (64) [M–CF₃SO₂]⁺, 257 (55) [390–CF₃SO₂]⁺, 124 (95) [257–CF₃SO₂]⁺, 95 (92) [124–CH₂N]⁺, 69 (100) [CF₃]⁺, 42 (86) [C₃H₆]⁺. Found (%): C, 20.98; H, 1.80; N, 7.81; S 17.95; F 32.19. Calc. for C₉H₁₀F₉N₃O₆S₃ (%): C, 20.65; H, 1.93; N, 8.03; S 18.38; F 32.67.

Reactions of N,N-diallyltriflamide 1 with arenesulfonamides 3a-d and trifluoroacetamide 4. To the solution of 7 mmol of arenesulfonamide **3** or trifluoroacetamide **4** and 20 mmol of NaI 50 ml of MeCN was added. To this solution, 7 mmol of compound **1** was added, the mixture was cooled to -30° C and 2.24 ml (20 mmol) of *t*-BuOCl was added dropwise. The mixture was stirred for 24 h in argon atmosphere in the dark. After completion, the solvent was removed at a reduced pressure, the residue dissolved in 50 ml of ethyl acetate, treated with 50 ml of aqueous Na₂S₂O₃, the extract dried over CaCl₂. The solvent was removed, the residue separated by column chromatography on silica by successive elution with hexane, hexane–ether 1:1, ether. From ethereal fraction the unreacted sulfonamide 3 or amide 4 was isolated, the product was further purified by column chromatography on fine silica with hexane and ether as eluents.

N-(2-iodo-3-{prop-2-en-1-yl[(triflamido)propyl]}tosylamide 12a. IR (KBr, ν /cm⁻¹): 3281, 2928, 1650, 1599, 1438, 1389, 1331, 1224, 1192, 1161, 1137, 1092, 1045, 937, 815, 785, 749, 708, 665, 592, 553, 498. ¹H NMR (CDCl₃) δ : 2.48 s (3H, CH₃), 3.76-3.65 m (2H, CH₂CH=CH₂), 3.89-3.82 m (2H, NHCH⁴HCHI), 4.20 dd (2H, NCHH^BCHI, *J* 15.8, 6.4 Hz), 4.55–4.44 m (1H, CHI), 4.95 s (1H, NH), 5.47–5.37 m (2H, CH=CH₂), 5.92-5.71 m (1H, CH=CH₂), 7.39-7.34 m (2H, CH^{3,5}, *J* 17.0, 8.5, 0.42 Hz), 7.75 dd (2H, CH^{2,6}, *J* 6.7, 1.5 Hz), 7.83 dd (2H, CH^{2,6}, *J* 8.3, 3.0 Hz). ¹³C NMR (CDCl₃), δ_{C} : 21.6 (CHI), 21.6 (CH₃), 47.9 (CH₂N), 52.1 (CH₂CHCH₂), 52.5 (CH₂CHI), 122.6 (=CH₂), 126.5 q (CF₃, *J* 328.1 Hz), 127.1 (C°), 130.1 (C^m), 130.6 (CH=), 136.5 (Cⁱ), 144.2 (C^p). ¹⁹F NMR (CDCl₃) δ_{F} : -75.0. Found (%): C, 31.70; H, 3.38; N, 4.92; S 11.63; F 10.48; I 23.49. Calc. for C₁₄H₁₈F₃IN₂O₄S₂ (%): C, 31.95; H, 3.45; N, 5.32; S 12.18; F 10.83; I 24.11.

N-[3-(N-allyltriflamido)-2-iodopropyl]benzenesulfonamide 12b. IR (KBr, *ν*/cm⁻¹): 3330, 3081, 2930, 2858, 2611, 1972, 1894, 1730, 1646, 1443, 1391, 1331, 1290, 1224, 1190, 1135, 1050, 991, 937, 915, 862, 788, 740, 695, 594, 500. ¹H NMR, δ: 3.70 dd (1H, NCH⁴CHI, *J* 14.6, 7.5 Hz), 3.85 dd (2H, $CH_2CH=CH_2$, *J* 11.0, 7.3 Hz), 4.11-3.92 m (2H, NHC H_2 CHI), 4.19 dd (1H, NCH^{*B*}CHI, *J* 15.4, 6.0 Hz), 4.56–4.38 m (1H, CHI), 5.47–5.38 m (2H, =CH₂), 5.90–5.70 m (1H, CH=), 7.66-7.43 m (2H, CH^{3.5}), 7.77-7.66 m (1H, CH⁴), 8.01-7.81 m (2H, CH^{2.6}). ¹³C NMR, δ_C: 26.0 (*C*HI), 47.6 (*C*H₂NH), 52.3 (*C*H₂CHCH₂), 52.6 (*C*H₂CHI), 119.7 q (CF₃, *J* 323.0 Hz), 122.3 (=*C*H₂), 127.6 (C^o), 129.2 (C^m), 129.4 (C^p), 130.6 (*C*H=), 133.2 (Cⁱ). ¹⁹F NMR, δ_F: – 75.1. Found (%): C, 29.96; H, 3.02; N, 5.43; S 12.46; F 11.10; I 24.30. Calc. for C₁₃H₁₆F₃IN₂O₄S₂ (%): C, 30.48; H, 3.15; N, 5.47; S 12.52; F 11.13; I 24.77.

N-Allyl-*N***-(3-chloro-2-iodopropyl)triflamide 13.** IR (KBr, *ν*/cm⁻¹): 3086, 2987, 2943, 2881, 1646, 1431, 1390, 1280, 1222, 1190, 1134, 1050, 990, 936, 915, 862, 787, 746, 708, 594, 499. ¹H NMR, δ: 3.69 dd (1H, NC*H*⁴CHI, *J* 15.1, 8.0 Hz), 3.83 dd (2H, C*H*₂CH=CH₂, *J* 12.0, 7.0 Hz), 4.07-3.90 m (2H, ClC*H*₂CHI), 4.17 dd (1H, NC*H*^{*B*}CHI, *J* 15.7, 6.5 Hz), 4.52-4.41 m (1H, CHI), 5.45-5.35 m (2H, =CH₂), 5.88-5.73 m (1H, CH=). ¹³C NMR, δ_C : 26.3 (*C*HI), 48.0 (*C*H₂CI), 52.6 (*C*H₂CHCH₂), 53.0 (*C*H₂CHI), 120.0 q (CF₃, *J* 323.4 Hz), 122.4 (=CH₂), 130.9 (CH=). ¹⁹F NMR, δ_F : -75.2. Found (%): C, 21.46; H, 2.57; N, 3.58; S 8.20; F 13.93; I 32.11; Cl 8.93. Calc. for C₇H₁₀ClF₃INO₂S (%): C, 21.47; H, 2.57; N, 3.58; S 8.19; F 14.56; I 32.41; Cl 9.05.

N-[3-(N-Allyltriflamido)-2-iodopropyl]trifluoroacetamide 12e. IR (KBr, *ν*/cm⁻¹): 3384, 3325, 3094, 2937, 1718, 1648, 1552, 1439, 1389, 1220, 1189, 1138, 1034, 995, 939, 909, 788, 729, 592, 503. ¹H NMR, δ_{H} : 3.76-3.50 m (2H, *CH*₂CH=CH₂), 4.01-3.76 m (2H, NC*H*⁴HCHI), 4.19-4.01 m (2H, NHCH*H*^BCHI), 4.45-4.30 m (1H, CHI), 5.48–5.31 m (2H, =CH₂), 5.92-5.67 m (1H, CH=), 7.20 t (1H, NH, *J* 5.7 Hz). ¹³C NMR, δ_{C} : 23.8 (*C*HI), 44.1 (*C*H₂NH), 52.4 (*C*H₂CHCH₂), 53.0 (*C*H₂CHI), 115.8 q (CF₃, *J* 287.3 Γμ), 119.8 q (CF₃, *J* 322.1 Hz), 122.1 (=CH₂), 130.8 (CH=), 157.8 q (C=O, *J* 37.6 Hz). ¹⁹F NMR, δ_{F} : -75.8. Found (%): C, 22.99; H, 2.30; N, 5.58; S 6.47; F 24.20; I 26.74. Calc. for C₉H₁₁F₆IN₂O₃S (%): C, 23.09; H, 2.37; N, 5.98; S 6.85; F 24.35; I 27.11.

Single crystal X-ray structure determinations:

The single crystals of 7 were obtained by slow vaporization from acetonitrile, **10** from chloroform, **11** from diethyl ether. Crystal data were collected on a Bruker D8 Venture diffractometer with MoK α radiation ($\lambda = 0.71073$) using the φ and ω scans. The structures were solved and refined by direct methods using the SHELX programs set [1]. Data were corrected for absorption effects using the multi-scan method (SADABS). Nonhydrogen atoms were refined anisotropically using SHELX programs set [1]. CCDC 1545539 (7) , CCDC 1520698 (10) and CCDC 1520697 (11) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre viawww.ccdc.cam.ac.uk/data_request/cif.

References:

[1] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.

Table 1. Crystal Data, Details of Intensity Measurements, and Structure Refinement forcompound 7

Empirical formula	C ₄ H ₅ ClF ₃ NO ₂ S
Formula weight / g·mol ⁻¹	223.60
Crystal system	Monoclinic
Space group	P 21/c
<i>a</i> / Å	8.8090(4)
b / Å	12.7998(6)
c / Å	7.2200(3)
β/°	91.795(2)
Volume / Å ³	813.68(6)
Ζ	4
Density (calculated) / g·cm ⁻³	1.825
Absorptions coefficient / mm ⁻¹	0.737
Radiation (λ / Å)	ΜοΚα (0.71073)
Temperature / K	100(2)
2Θ range / °	5.62 - 60.10
Crystal size / mm	$0.180 \times 0.350 \times 0.450$
Crystal habit	colorless prizm
F(000)	448
Index ranges	$-12 \le h \le 12, -18 \le k \le 18, -8 \le l \le 10$
Reflections collected	21282
Independent reflections	2381
Max. and min. transmission	0.6398 / 0.7460
Number of ref. parameters	109
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0257 / 0.0640
R_1 / wR_2 (all data)	0.0314 / 0.0671
Goodness-of-fit on F ²	1.036
Largest diff. peak and hole / e·Å-3	0.433 / -0.322
Weight scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0307P) ² +0.4853P] where P=(F_o^2 +2 F_c^2)/3

 Table 2. Selected bond lengths, bond and torsion angles in compound 7

|--|

Cl1-C4	1.7851(12)	01-S1-O2	122.03(6)	01-S1-N1-C2	-9.39(11)
S1-O1	1.4226(10)	01-S1-N1	110.36(6)	02-S1-N1-C2	-146.55(9)
S1-O2	1.4255(10)	02-S1-N1	109.67(6)	C1-S1-N1-C2	102.80(10)
S1-N1	1.6063(10)	01-S1-C1	105.31(6)	01-S1-N1-C3	152.48(8)
S1-C1	1.8362(14)	O2-S1-C1	104.20(7)	02-S1-N1-C3	15.32(10)
F1-C1	1.3248(18)	N1-S1-C1	103.36(6)	C1-S1-N1-C3	-95.33(9)
F2-C1	1.3194(16)	C2-N1-C3	117.08(9)	01-S1-C1-F2	-67.78(12)
F3-C1	1.3230(18)	C3-C4-Cl1	109.67(8)	N1-S1-C1-F2	176.39(10)
N1-C2	1.4800(14)	C3-N1-S1	119.44(8)	C3-N1-C2-C3	55.64(13)
N1-C3	1.4819(14)	F2-C1-F3	108.65(12)	S1-N1-C2-C3	-142.08(8)
C2-C3	1.5266(16)	F2-C1-S1	109.81(10)	N1-C2-C3-C4	72.09(12)
C3-N1	1.4819(14)	C2-C3-C4	114.50(10)	N1-C3-C4-Cl1	-171.93(8)
C3-C4	1.5277(16)	N1-C2-C3	109.95(9)	C2-C3-C4-Cl1	65.83(11)

Figure 2. Moleculare structure of compound 10

Empirical formula	$C_8H_{10}F_6I_2N_2O_4S_2$
Formula weight / g·mol ⁻¹	630.10
Crystal system	monoclinic
Space group	P 21/c
<i>a</i> / Å	11.305(2)
b / Å	17.982(3)
<i>c</i> / Å	18.058(3)
α / °	90
eta / °	100.155(5)
γ / °	90
Volume / Å ³	3613.5(9)
Ζ	8
Density (calculated) / g·cm ⁻³	2.316
Absorptions coefficient / mm ⁻¹	3.786
Radiation $(\lambda / \text{\AA})$	ΜοΚα (0.71073)
Temperature / K	100(2)
2Θ range / °	4.30 - 60.30
Crystal size / mm	$0.310\times0.410\times0.500$
Crystal habit	colorless plate
F(000)	2368
Index ranges	$-15 \le h \le 15, -25 \le k \le 25, -25 \le l \le 25$
Reflections collected	147899
Independent reflections	10609
Max. and min. transmission	0.362 / 0.746
Number of ref. parameters	434
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0431 / 0.0891
R_1 / wR_2 (all data)	0.0786 / 0.1031
Goodness-of-fit on F ²	1.056
Largest diff. peak and hole / $e \cdot Å^{-3}$	2.096 / -2.015

Table 3. Crystal Data, Details of Intensity Measurements, and Structure Refinement for compound 10

w=1/[$\sigma^2(F_o^2)$ +(0.0361P)²+11.1751P], where P=(F_o^2 +2 F_c^2)/3

Bond	<i>l</i> , Å	Angle	φ, °	Torsion angle	θ, °
I1-C4	2.159(4)	O2-S1-O1	122.1(2)	C4-C2-N2-C8	104.7(4)
I2-C7	2.165(4)	O2-S1-N1	109.8(2)	C4-C2-N2-S2	-86.1(4)
S1-O2	1.415(3)	O2-S1-C1	105.0(2)	O3-S2-N2-C2	30.4(4)
S1-O1	1.424(3)	N1-S1-C1	105.8(2)	C5-S2-N2-C2	-81.5(4)
S1-N1	1.596(4)	F1-C1-S1	109.1(4)	O2-S1-C1-F1	-67.5(4)
S1-C1	1.840(5)	C2-C4-I1	106.3(3)	N1-S1-C1-F1	176.5(3)
F1-C1	1.329(6)	C8-C7-C6	116.8(4)	O2-S1-N1-C6	162.7(3)
C2-N2	1.482(5)	F2-C5-F3	108.7(5)	S1-N1-C6-C7	-86.2(4)
C2-C4	1.512(6)	N1-C6-C7	113.5(3)	C3-N1-C6-C7	105.1(4)
N2-C8	1.490(5)	C2-C4-C3	117.2(4)	N1-C6-C7-C8	-64.4(5)

 Table 4. Selected bond lengths, bond and torsion angles in compound 10

Empirical formula	$C_9H_{10}F_9N_3O_6S_3$
Formula weight / g·mol ⁻¹	523.38
Crystal system	triclinic
Space group	P-1
<i>a</i> / Å	11.214(4)
b / Å	11.857(5)
c / Å	14.834(7)
α / °	73.267(1)
eta / °	78.954(1)
γ / °	80.979(1)
Volume / Å ³	1848.0(1)
Ζ	4
Density (calculated) / g·cm ⁻³	1.883
Absorptions coefficient / mm ⁻¹	0.525
Radiation $(\lambda / \text{\AA})$	Μο _{Kα} (0.71073)
Temperature / K	100(2)
2Θ range / °	4.92 - 60.24
Crystal size / mm	$0.370\times0.430\times0.500$
Crystal habit	colorless prizm
F(000)	1050
Index ranges	$-15 \le h \le 15, -16 \le k \le 16, -21 \le l \le 21$
Reflections collected	40457
Independent reflections	9983
Max. and min. transmission	0.780 / 0.830
Number of ref. parameters	541
$R_1 / wR_2 [I > 2\sigma(I)]$	0.0792 / 0.2262
R_1 / wR_2 (all data)	0.1164 / 0.2648
Goodness-of-fit on F ²	1.051
Largest diff. peak and hole / $e \cdot Å^{-3}$	1.486 / -1.469

Table 5. Crystal Data, Details of Intensity Measurements, and Structure Refinement for compound 11

w=1/[$\sigma^2(F_o^2)$ +(0.1227P)²+ 9.1291P], where P=(F_o^2 +2 F_c^2)/3

 Table 6. Selected bond lengths, bond and torsion angles in compound 11

Bond	l, Å	Angle	φ, °	Torsion angle	θ, °
S1-O1	1.416(4)	O1-S1-O2	121.7(3)	O1-S1-N1-C9	-32.1(4)
S1-O2	1.422(4)	01-S1-N1	109.8(2)	O2-S1-N1-C9	-168.1(4)
S1-N1	1.587(4)	O1-S1-C1	104.5(3)	C1-S1-N1-C9	80.0(4)
S1-C1	1.834(6)	N1-S1-C1	105.6(3)	O1-S1-N1-C2	167.4(4)
F1-C1	1.322(9)	C9-N1-C2	115.9(3)	C5-S2-N2-C4	87.3(4)
F2-C5	1.298(8)	F9-C1-F1	109.3(6)	S4-N4-C16-C10	147.4(3)
F3-C1	1.330(8)	F1-C1-S1	109.6(5)	N1-S1-C1-F9	-177.7(5)
N1-C9	1.466(5)	N1-C2-C3	110.5(3)	O1-S1-C1-F1	176.9(5)
N1-C2	1.477(5)	N3-C3-C2	107.6(3)	O2-S1-C1-F1	-54.2(6)
C2-C3	1.534(6)	C2-C3-C4	114.9(4)	N1-S1-C1-F1	61.1(6)
S1-O1	1.416(4)	O1-S1-O2	121.7(3)	O1-S1-N1-C9	-32.1(4)
S1-O2	1.422(4)	01-S1-N1	109.8(2)	O2-S1-N1-C9	-168.1(4)
S1-N1	1.587(4)	O1-S1-C1	104.5(3)	C1-S1-N1-C9	80.0(4)
S1-C1	1.834(6)	N1-S1-C1	105.6(3)	01-S1-N1-C2	167.4(4)
F1-C1	1.322(9)	C9-N1-C2	115.9(3)	C5-S2-N2-C4	87.3(4)

Figure 4. ¹H NMR spectrum of compound 6 (400 MHz, CD₃CN).

Figure 5. ¹³C NMR spectrum of compound 6 (400 MHz, CD₃CN).

Figure 6. ¹⁹F NMR spectrum of compound 6 (400 MHz, CD₃CN).

22

Figure 8. ¹H NMR spectrum of compound 7 (400 MHz, CD₃CN).

Figure 9. ¹³C NMR spectrum of compound 7 (400 MHz, CD₃CN).

Figure 10. ¹⁹F NMR spectrum of compound 7 (400 MHz, CD₃CN).

-62 -64 -66 -68 -70 -72 -74 -76 -78 -80 -82 -84 -86 -88 (ppm)

Figure 11. FT-IR spectrum of compound 7 (film)

Figure 12. ¹H NMR spectrum of compound 8 (400 MHz, CDCl₃).

Figure 13. ¹³C NMR spectrum of compound 8 (400 MHz, CDCl₃).

Figure 14. ¹⁹F NMR spectrum of compound 8 (400 MHz, CDCl₃).

Figure 15. FT-IR spectrum of compound 8 (film)

Figure 16. ¹H NMR spectrum of compound 9 (400 MHz, CDCl₃).

Figure 17. ¹³C NMR spectrum of compound 9 (400 MHz, CDCl₃).

Figure 18. ¹³C NMR (*J-modulation*) spectrum of compound 9 (400 MHz, CDCl₃).

(*ppm*)

Figure 19. ¹⁹F NMR spectrum of compound 9 (400 MHz, CDCl₃).

Figure 21. ¹H NMR spectrum of compound 10 (400 MHz, CD₃CN).

Figure 22. ¹³C NMR spectrum of compound 10 (400 MHz, CD₃CN).

Figure 23. ¹⁹F NMR spectrum of compound 10 (400 MHz, CD₃CN).

-73.10 -73.20 -73.30 -73.40 -73.50 -73.60 -73.70 -73.80 -73.90 -74.00 -74.10 -74.20 -74.30 (ppm)

Figure 24. FT-IR spectrum of compound 10 (KBr)

39

Figure 25. ¹H NMR spectrum of compound 11 (400 MHz, CD₃CN).

Figure 26. ¹³C NMR spectrum of compound 11 (400 MHz, CD₃CN).

Figure 27. ¹⁹F NMR spectrum of compound 11 (400 MHz, CD₃CN).

