Electronic Supplementary Materials (ESI)

Design and Optimization of an Ultra-Sensitive Hairpin DNA aptasensor for Salmonella Detection

Jayeon Lee^{a, b}, Juyeon Jung^{a, b}, Chang Soo Lee^{a, b*} and Tai Hwan Ha^{a, b*}

^a Department of Nahobiotechnology, KRIBB school of Biotechnology, Korea University of Science & Technology, Daejeon 34141, Republic of Korea

^b Hazards Monitoring BNT Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; *E-mail: taihwan@kribb.re.kr

1. Binding affinity of EAD2-hemin complex

2 μ M hemin was prepared in 50 mM tris-HCl (pH 7.4), 100 mM NaCl, 5 mM KCl and 1 mM MgCl₂. EAD2 was dissolved in same buffer. Hemin was mixed with various concentration of EAD2 and stood for at least an hour, and the dissociation constant (K_d) for the DNA-hemin complexes was determined by plotting the absorbance changes of hemin at 404nm against DNA concentrations (0 -10 μ M). The K_d for EAD2 was determined to be

Figure S1. A plot for obtaining the dissociation constant for EAD2-hemin complex

71.5 nM.

2. Kinetics of SHDs

Figure S2.1. Time-dependent Absorbance change of SHD_4 with different concentration of *S*. Typhimurium. Blank (a) 1×10^7 CFU/mL (b) 2×10^7 CFU/mL (c) 3.8×10^7 CFU/mL (d) 7×10^7 CFU/mL (e) 1×10^8 CFU/mL (f) 1.5×10^8 CFU/mL (g). [SHD₄] = 100nM, [hemin] = 300nM

Figure S2.2. Time-dependent Absorbance change of hem-SHD₂ with different concentration of S. Typhimurium. [hem-SHD₂]= 200nM

3. CL inhibition of *p*-coumaric acid

Figure S3. An accumulated CL image of reaction of 1 μ M hemin mixture with 2mM of luminol and H₂O₂ (a), 1 μ M EAD2-hemin mixture with 2mM luminol and H₂O₂ (b), 1 μ M hemin mixture with 2mM luminol, H₂O₂ and 0.5mM *p*-coumaric acid mixture (c), 1 μ M EAD2-hemin mixture with 1mM luminol, H₂O₂ and 0.5mM p-coumaric acid(d). / CL accumulation time: 107sec.

4. Real sample tests

In prior to test the applicability of SHDs in real samples, we examined the catalytic activity of EAD2(Gquadruplex)-hemin complex in real samples (Figure S4). The CL intensity generated from EAD2-hemin complex was greatly decreased in the presence of undiluted real samples. To avoid these depression of CL signal, samples were diluted 100 fold and sensitivity test were demonstrated. **Figure S4.** An accumulated CL image of Luminol- H_2O_2 reaction of EAD2-hemin complex and pure whole milk (or diluted milk) mixture. CL intensity was suppressed by whole milk. [EAD2]= 200 nM, [hemin]= 1 μ M, [luminol/ H_2O_2/p -coumaric acid]= 2mM/2mM/0.5mM/ CL accumulation time: 180sec.

Figure S5. An accumulated CL image of Luminol- H_2O_2 reaction of SHD₃-hemin complex with *S*. Typhimurium spiked chicken eggs. (100-fold diluted eggs) Concentration of S [EAD2]= 200 nM, [hemin]= 1 μ M, [luminol/ H_2O_2/p -coumaric acid]= 2mM/2mM/0.5mM/ CL accumulation time: 180sec.

5. Gibbs free energy calculation

Table S1. $[Hairpin]_0 = 100 \text{ nM}, [Hemin]_0 = 300 \text{ nM}$

ΔG^{e}_{blank}	[Hairpin]	[G-quad]	[Hemin]	efficiency
- 3.7 kcal/mol	100 nM	0.016 nM	300 nM	0.016 %
- 6.0 kcal/mol	99 nM	0.75 nM	299 nM	0.75 %
- 8.0 kcal/mol	83 nM	17 nM	283 nM	17 %
- 10.0 kcal/mol	17 nM	83 nM	217 nM	83 %

Table S2. [Hairpin]₀ = 5 μ M, [Hemin]₀ = 15 μ M

ΔG^{2}_{blank}	[Hairpin]	[G-quad]	[Hemin]	efficiency
- 3.7 kcal/mol	4.962 μM	0.038 μM	14.962 μM	0.76 %
- 6.0 kcal/mol	3.7 μM	1.3 μM	13.7 μM	26 %
- 8.0 kcal/mol	0.6 µM	4.4 μM	10.6 μM	88 %
- 10.0 kcal/mol	0.02 μM	4.98 μM	10.02 μM	99.6 %

Table S3. [Hairpin]₀ = 100 μ M, [Hemin]₀ = 300 μ M

ΔG^{2}_{blank}	[Hairpin]	[G-quad]	[Hemin]	efficiency
- 3.7 kcal/mol	87 μM	13 µM	287 μM	13 %
- 6.0 kcal/mol	16 µM	84 μM	216 µM	84 %
- 8.0 kcal/mol	1 μΜ	99 µM	201 µM	99 %
- 10.0 kcal/mol	0 μM	100 μM	200 μM	100 %

In order to calculate the individual SHD₄ concentration in hairpin state and in G-quadruplex state, we assumed that G-quadruplex formation free energy is – 9.2 kcal/mol and hairpin formation energy is -5.7 kcal/mol. The standard free energy change for the hairpin to turn into G-quadruplex is calculated to be -3.7 kcal/mol, ΔG^{e}_{blank} . Bearing the energy in mind, we have calculated the actual hairpin and G-quadruplex concentrations for the given initial hairpin concentration of 100 nM, [hairpin]₀ and hemin concentration of 300 nM, [hemin]₀: Gas constant R= 8.31447 JK⁻¹mol⁻¹

[G - quad] $\Delta G = \Delta G^{2}_{blank} + RT \ln \left(\frac{[haripin][hemin]}{[hemin]} \right)$ while [G-quad]₀ = 0, [hairpin]₀ = 100 nM, [hemin]₀ = 300 nM

At equilibrium, $\Delta G = 0$, [G-quad] = x, [hairpin] = [hairpin]_0 - x, [hemin] = [hemin]_0 - x

[G - quad] $-\Delta G^{2}_{blank} = RT In ([haripin][hemin]),$

3.7 kcal/mol·4186 J/kcal = RT ln $(\overline{(100 - x)(300 - x)})$

Solving the quadratic equation yields an exact solution for the G-quadruplex concentration at equilibrium, and results at diverse initial concentrations and ΔG^{ρ}_{blank} from -3.7 kcal/mol to -10 kcal/mol were summarized in Table 1, 2, and 3 in the above.