Electronic Supplementary Information (ESI)

Methane Combustion over Pd/CoAl₂O₄/Al₂O₃ Catalysts Prepared by Galvanic Deposition.

Yuji Mahara^a, Takumi Tojo^a, Kazumasa Murata^a, Junya Ohyama^{a,b}, Atsushi Satsuma^{a,b,*}

^a Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.

^b Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Kyoto 615-8530, Japan.

*E-mail: satsuma@chembio.nagoya-u.ac.jp

Comparison with Previously Reported Catalysts

Figure S1. Methane combustion activities for representative catalysts^{1–9}. (a) Methane reaction rate per amount of catalyst. (b) Methane reaction rate per amount of Pd.

Pd particle size effect of TOF of methane combustion

Catalysts	Support	preparation method	Calcination	Pd loading (wt%)	Co loading (wt%)	d _{Pd-CO} (nm)	TOF at 300°C (h⁻¹) ^c
Series of PdCoAl-SI	Al ₂ O ₃ (sasol)	Sequential Impregnation	500°C for 3 h	0.5ª	5 ^a	3	63
	Al ₂ O ₃ (sasol)	Sequential Impregnation	500°C for 3 h	1 ^a	5 ^a	3.7	71
	Al ₂ O ₃ (sasol)	Sequential Impregnation	500°C for 3 h	2 ^a	5 ^a	6.3	304
	Al ₂ O ₃ (sasol)	Sequential Impregnation	900°C for 10 h	2 ^a	5 ^a	23.1	407
Series of PdAI-I	Al ₂ O ₃ (sasol)	Impregnation	500°C for 3 h	1 ^a	-	1.9	17
	Al ₂ O ₃ (sasol)	Impregnation	500°C for 3 h	2ª	-	3.7	160
	Al ₂ O ₃ (sasol)	Impregnation	800°C for 10 h	2 ^a	-	5.4	164
	Al ₂ O ₃ (sasol)	Impregnation	850°C for 10 h	2 ^a	-	7.7	197
	Al ₂ O ₃ (sasol)	Impregnation	900°C for 10 h	2 ^a	-	19.1	290

Table S1. List of PdCoAl-SI and PdAL-I catalysts with different Pd particle sizes.

^a Nominal value.

Figure S2. Effect of the Pd particle diameter on the methane combustion TOF at 300 °C.

X-ray photoelectron spectroscopy (XPS) measurements

XPS measurements were carried on a JPS-9000MC system (JEOL Ltd.) with a Al $K\alpha$ radiation. The samples were mounted on a carbon tape. In the analysis, the Shirly equation was used for the background, and the energy position was adjusted with the C 1s XPS spectrum.

As shown in Figure S3, the Co 2p XPS spectra were clearly observed in the PdCoAl-GD and PdCoAl-SI samples. This result indicates that Co species exist near the surface of γ -Al₂O₃.

Figure S3. Ex situ Co 2d XPS spectra of: (a) PdCoAl-GD and (b) PdCoAl-SI after methane combustion at 600 °C.

Operando Pd K-edge XAFS measurements

Figure S4. Normalized Pd K-edge XANES spectra of PdCoAl-SI during operando XAFS measurements.

Figure S5. Normalized Pd K-edge XANES spectra of PdAl-I during operando XAFS measurements.

In order to examine more general trends, the operando XAFS experiments were carried out over various Pd catalysts.

Al₂O₃ (JRC-ALO-2, JRC-ALO-5, and JRC-ALO-8) as a support were supplied from the Catalysis Society of Japan. The four new catalysts (Pd/ALO2, Pd/ALO5, Pd/ALO8, and Pd/ALO8-800A) were prepared by an impregnation method using a Pd(NO₃)₂ solution and Al₂O₃, followed by dryness, and calcination in air at 500 °C for 3 h. Pd/Co₃O₄/Al₂O₃ was prepared by a sequential impregnation method as follows. First, Co(NO₃)₂·6H₂O and Al₂O₃ (Sasol) were mixed and the resulting mixture stirred. After evaporation and drying overnight at 80 °C, the resulting solid was calcined at 500 °C for 3h. The obtained solid and Pd(NO₃)₂ were mixed and the mixture stirred. After evaporation and drying overnight at 80 °C, the resulting solid was calcined at 500 °C for 3 h, and Pd/Co₃O₄/Al₂O₃ was obtained. The prepared catalysts are listed in Table S2.

Catalysts	Support	preparation method	Calcination	Pd loading (wt%)	Co loading (wt%)	d _{Pd-CO} (nm)
Pd/ALO2	JRC-ALO-2	Impregnation	500°C for 3 h	2ª	-	2.7
Pd/ALO5	JRC-ALO-5	Impregnation	500°C for 3 h	2ª	-	2.8
Pd/ALO8	JRC-ALO-8	Impregnation	500°C for 3 h	2ª	-	4.7
Pd/ALO8-800A	JRC-ALO-8	Impregnation	800°C for 10 h	2ª	-	7.1
Pd/Co ₃ O ₄ /Al ₂ O ₃	Al ₂ O ₃ (sasol)	Sequential Impregnation	500°C for 3 h	2ª	5ª	3.7

	Table S2.	. List of Pd/	Al ₂ O ₃ and P	$d/Co/Al_2O_3$	catalysts with	different suppo	orts.
--	-----------	---------------	--------------------------------------	----------------	----------------	-----------------	-------

^a Nominal value.

Figure S6. Correlation between T_{10} and the PdO ratio for Pd-based catalysts (Figure 9(d)). The catalysts are listed in Table S2.

STEM/EDX images of PdCoAl-GD after combustion

(a) After H₂ flow @ 500 °C

(b) After CH_4 + O_2 flow @ 500 °C

Figure S7. HAADF-STEM images of PdCoAl-GD (a) after reduction by H_2 at 500 °C and (b) after methane combustion at 500 °C. (c) HAADF-STEM image and EDX element mapping of PdCoAl-GD after methane combustion at 500 °C.

PdCoAl-GD after combustion showed a structure in which the PdO particles were dispersed on $CoAl_2O_4$, and the catalyst structure remained unchanged except that Pd was oxidized.

Pd K-edge XAFS spectra of the catalysts after H_2 treatment at 500 °C

Figure S8. (a) the Pd K-edge XANES spectra and (b) the Fourier transformed EXAFS spectra of the H_2 treated catalyst at 500 °C.

All XANES spectra were almost in agreement with Pd foil. A peak derived from the Pd–Pd bond of Pd⁰ also appeared from Fourier transformed EXAFS. Conversely, since almost no peaks derived from Pd–O bond of PdO was observed, the treatment at 500 °C under H₂ reduced all Pd species to a metallic phase.

Pd 3d XPS spectra of the catalysts

Table S3. Pdⁿ⁺ 3d_{5/2} binding energies for the catalysts.

Samples	Pd ⁿ⁺ 3d _{5/2} B.E. (eV)
PdCoAl-GD	336.1
PdCoAl-SI	336.3
PdAl-I	336.9

REFERENCE

- H. Wang, C. Chen, Y. Zhang, L. Peng, S. Ma, T. Yang, H. Guo, Z. Zhang, D. S. Su and J. Zhang, *Nat. Commun.*, 2015, 6, 7181.
- 2 M. Cargnello, J. J. D. Jaen, J. C. H. Garrido, K. Bakhmutsky, T. Montini, J. J. C. Gamez, R. J. Gorte and P. Fornasiero, *Science*, 2012, **337**, 713–717.
- 3 X. Pan, Y. Zhang, Z. Miao and X. Yang, J. Energy Chem., 2013, 22, 610–616.
- 4 Y. Lou, J. Ma, W. Hu, Q. Dai, L. Wang, W. Zhan, Y. Guo, X.-M. Cao, Y. Guo, P. Hu and G. Lu, *ACS Catal.*, 2016, **6**, 8127–8139.
- 5 G. Ercolino, G. Grzybek, P. Stelmachowski, S. Specchia, A. Kotarba and V. Specchia, *Catal. Today*, 2015, 257, 66–71.
- 6 S. Colussi, A. Gayen, M. F. Camellone, M. Boaro, J. Llorca, S. Fabris and A. Trovarelli, *Angew. Chem. Int. Ed.*, 2009, 48, 8481–8484.
- 7 Z. Wang, J. Deng, Y. Liu, H. Yang, S. Xie, Z. Wu and H. Dai, *Catal. Today*, 2017, 281, 467–476.
- Z. Chen, S. Wang, Y. Ding, L. Zhang, L. Lv, M. Wang and S. Wang, *Appl. Catal. A Gen.*, 2017, 532, 95–104.
- 9 X. Zou, Z. Rui and H. Ji, ACS Catal., 2017, 7, 1615–1625.