Electronic Supplementary Information

Hierarchical porous graphitic carbon for highperformance supercapacitors at high temperature†

Chong Chen,^[a,c] Dengfeng Yu,^[b] Gongyuan Zhao,^[a] Lei Sun,^[a] Yinyong Sun,^[a] Kunyue Leng,^[a] Miao

Yu,*[a] and Ye Sun*[b]

^aSchool of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001,

China

^bCondensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001,

China

* Corresponding author. E-mail address: miaoyu_che@hit.edu.cn (M. Yu), sunye@hit.edu.cn (Y. Sun)

Electrochemical measurement

Carbon product (80 wt%), acetylene black (15 wt%) and polytetrafluoroethylene (PTFE) binder (5 wt%) were mixed in ethanol, then coated onto nickel-foam current collectors (1×1 cm²), and dried at 120 °C for 12 h. The mass loading of the active materials in each working electrode was ~1.5 mg cm⁻². For the three-electrode system, Pt foil and Hg/HgO electrode were used as the counter and reference electrodes, respectively. The electrochemical performance was tested in 6 mol L⁻¹ KOH electrolyte. For the two-electrode system (2032 stainless steel coin cell, PTFE as insulation), both 6 mol L⁻¹ KOH and EMIMBF₄ were used as the electrolyte, respectively. The dried electrodes (~1.5 mg cm⁻², 0.2 mm in thickness) were symmetrically assembled with glassy paper as the separator in a glove box filled with argon. The cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) measurements were carried out using an electrochemical workstation (CHI660E, ChenHua Instruments Co. Ltd., Shanghai).

For the three-electrode system, the specific capacitance derived from galvanostatic tests were calculated by the following equations:

$$C_{sp} = \frac{1\Delta t}{m\Delta V} \tag{1}$$

in which *C* (F g⁻¹) is the specific capacitance; *I* (A) is the discharge current; Δt (s) is the discharge time; ΔV (V) is the potential window; and *m* (g) is the mass of the active materials.

$$\rho = \frac{1}{V_{total} + \frac{1}{\rho_{carbon}}}$$
(2)

in which ρ (g cm⁻³) is the density of electrode materials; V_{total} (cm³ g⁻¹) is the total pore volume of active material measured by nitrogen isotherm; and ρ_{carbon} is the density of carbon (2 g cm⁻³). $C_{\nu} = C\rho$ (3)

in which C_{ν} (F cm⁻³) is the volumetric capacitance; C (F g⁻¹) is the specific capacitance; and ρ (g cm⁻³) is the density of electrode materials.

For the two-electrode system, the specific (or gravimetric) capacitances (C, F g⁻¹) were calculated using equation 4 for galvanostatic charge-discharge method and equation 5 for cyclic voltammetry data:

$$C_{sp} = \frac{41\Delta t}{m\Delta V}$$

$$C = \frac{2}{mv(V_b - V_a)} \int_{V_a}^{V_b} IdV \quad (5)$$

in which I(A) is the discharge current, Δt (s) is the discharge time, $\Delta V(V)$ is the potential window, $v(V s^{-1})$ is the scan rate, V_b and $V_a(V)$ are the high and low potential limit of the CV tests; and m (g) is the total mass of the active materials.

To construct the Ragone plot, the energy density E (Wh kg⁻¹) and P (W kg⁻¹) based on the electrode were calculated by the following equations:

$$E = \frac{1}{8}C_{sp}(\Delta V)^{2} \left(\frac{1000}{3600}\right)$$
(6)
P = 3600 $\frac{E}{\Delta t}$ (7)

in which C (F g⁻¹) is the specific capacitance, and ΔV (V) is the potential window, and Δt (s) is the discharge time.

Fig. S1 The SSA was measured by nitrogen adsorption-desorption isotherms (BeiShiDe Instrument-S&T 3H-2000PS1) after vacuum drying at 120 °C for 1 h. The Brunauer-Emmett-Teller (BET) method was used for calculating the specific surface area, and the Barrett-Joyner-Halenda (BJH) model was used for estimating the pore size distribution. Nitrogen adsorption–desorption isotherm (with the pore size distribution in the inset) of (a) '*GC-Mg/ZA*', (b) '*GC-1Mg/U*', (c) '*GC-3Mg/U*', and (d) '*GC-5Mg/U*'.

Fig. S2 (a) XPS survey, (b) C1s, (c) O1s and (d) N1s spectra of the 'GC-3Mg/U' sample.

Fig. S3 The urea and zinc acetate dehydrate mixture at the same conditions.

Fig. S4 Electrochemical performance of all samples measured in a three-electrode system using 6 mol L^{-1} KOH electrolyte. (a) CV curves at a scan rate of 50 mV s⁻¹. (b) Charge–discharge curves at a current density of 1 A g⁻¹. (c) Gravimetric capacitances at different current densities from 1 to 40 A·g⁻¹. (d) Volumetric capacitances at different current densities

Materials	Electrolyte	Current Density	Specific Capacitance (F·g ⁻¹)	Ref. No.
Hierarchical porous graphitic carbon	6 M KOH	$1 \ A \cdot g^{-1}$	320	This work
Hierarchical porous carbon fibers	3 M KOH	$1 \text{ A} \cdot \text{g}^{-1}$	189.7	[1]
Three-dimensional beehive-like hierarchical porous carbons	6 M KOH	$1 \text{ A} \cdot \text{g}^{-1}$	287	[2]
Hierarchical hollow porous carbon spheres	6 M KOH	$1 \text{ A} \cdot \text{g}^{-1}$	303.9	[3]
Hierarchical porous carbons	6 M KOH	$0.2 \cdot A g^{-1}$	283.4	[4]
Porous carbon through hard-soft dual templates	6 M KOH	$1 \text{ A} \cdot \text{g}^{-1}$	153	[5]
Hierarchical porous carbons	6 M KOH	$1 \text{ A} \cdot \text{g}^{-1}$	190	[6]
Nitrogen-doped porous carbon nanofibers	6 M KOH	$1 \text{ A} \cdot \text{g}^{-1}$	202	[7]
Nitrogen and sulfur codoped porous carbon microsphere	6 M KOH	$0.1 \ A \cdot g^{-1}$	295	[8]
Chlorine-doped ordered mesoporous carbon	6 M KOH	$0.5 \ A \ g^{-1}$	220	[9]

Table S1 Comparison of the specific capacitances of previously fabricated hierarchical porous carbons using three-electrode systems.

Fig. S5 Electrochemical performance characteristics of '*HPGC-3*' measured in a two-electrode system using EMIMBF₄ electrolyte operating at 25 °C, 50 °C, 100 °C and 150 °C, respectively. CV curves at a scan rate of (a) 100 mV s⁻¹; (b) 500 mV s⁻¹. Charge–discharge curves at a current density of (c) 1 A g⁻¹; (d) 10 A g⁻¹.

Fig. S6 (c) Cycling stabilities measured at 2 A g^{-1} operating at 150 °C, with the magnified galvanostatic charge-discharge curves before and after 1500 cycles in the inset. (b) Long-term stability of *HPGC-3* '- based supercapacitors under dynamic thermal stresses, with the magnified galvanostatic charge-discharge curves before and after 500 cycles in the inset. (c) Ragone plot of '*HPGC-3*'.

Fig. S7 Electrochemical performance of '*HPGC-3G*', '*HPGC-3P*' and '*HPGC-3H*' using glycine (G), polyvinylpyrrolidone (P) and hexamethylenetetramine (H) to replace urea during the HPGC synthesis, measured in a three-electrode system in the 6 mol L⁻¹ KOH electrolyte. Charge–discharge curves of (a) '*HPGC-3G*'; (c) '*HPGC-3P*'; (e) '*HPGC-3H*' at different current densities. CV curves of (b) '*HPGC-3G*'; (d) '*HPGC-3P*'; (f) '*HPGC-3H*' at different scan rates.

References

[1] Y. Liu, Z. J. Shi, Y. F. Gao, W. D. An, Z. Z. Cao and J. R. Liu, *ACS Appl. Mater. Interfaces*, 2016, **8**, 28283–28290.

[2] L. Yao, G. Z. Yang, P. Han, Z. H. Tang and J. H. Yang, J. of Power Sources, 2016, 315, 209-217.

[3] J. Liu, X. Y. Wang, J. Gao, Y. W. Zhang, Q. Lu and M. Liu, *Electrochim. Acta*, 2016, 211, 183–192.

[4] S. Wang, T. Wang, P. C. Liu, Y. Shi, G. Liu and J. P. Li, Mater. Res. Bull., 2017, 88, 62-68.

[5] X. Y. Chen, C. Chen, Z. J. Zhang and D. H. Xie, J. Mater. Chem. A, 2013, 1, 7379–7383.

[6] J. B. Zhang, L. J. Jin, J. Cheng and H. Q. Hu, Carbon, 2013, 55, 221–232.

[7] L. F. Chen, X. D. Zhang, H. W. Liang, M. G. Kong, Q. F. Guan, P. Chen, Z. Y. Wu and S. H. Yu, *ACS NANO*, 2012, **6**, 7092–7102.

[8] J. C. Zhang, J. S. Zhou, D. Wang, L. Hou and F. M. Gao, *Electrochim. Acta*, 2016, 191, 933–939.

[9] Z. K. Kou, B. B. Guo, Y. F. Zhao, S. F. Huang, T. Meng, J. Zhang, W. Q. Li, I. S. Amiinu, Z. H. Pu, M. Wang, M. Jiang, X. B. Liu, Y. F. Tang, and S. C. Mu, *ACS Appl. Mater. Interfaces*, 2017, **9**,

3702-3712.