Supporting Information

Bimetallic Copper and Zinc -Catalyzed Oxidative Cycloaddition of 3-Aminopyridazines and Nitriles: A Direct Synthesis of

1,2,4-Triazolo[1,5-b]pyridazines via C-N and N-N Bond-forming Process

 and $\mathrm{Li}-W e n \mathrm{Xu}^{*}$ a,b
a. State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, and University of the Chinese Academy of Sciences, P. R. China. E-mail: liwenxu@hznu.edu.cn.
b. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China. Fax: 862886 5135; Tel: 8628865135

Table of Contents

1. General Information 3
2. General Procedure 3
3. Gram-Scale Preparation of 3a 8
4. Procedure and analytical date for the derivatives of 3a 8
5. Procedure for 6 10
6. Procedure for 7 10
7. Procedure for 8 11
8. References 11
9. Copies of NMR Spectra 12
10. LC-MS spectra of formation of 3a 48

S-1. General Information

Reagents were purchased from commercial sources and were used as received unless mentioned otherwise. Reactions were monitored by thin layer chromatography using silica gel. ${ }^{1} \mathrm{H}$ NMR was recorded at 300 MHz and 400 MHz : chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (DMSO-d6 at 2.50). ${ }^{13} \mathrm{C}$ NMR was recorded at 75 MHz and 100 MHz : chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (DMSO-d6 at 39.52). High-resolution mass spectra (HRMS) were recorded by an Agilent instrument with ESI-MS technique. LC-MS was recorded by Shimadzu LCMS-2020, equipped with an ESI ion source in the positive ionization mode.

S-2. General Procedure

To a dried vial was added $1(0.77 \mathrm{mmol}), 2(1.93 \mathrm{mmol}), \mathrm{CuBr}(11.05 \mathrm{mg}, 0.077 \mathrm{mmol})$, 1,10-phenanthroline ($13.9 \mathrm{mg}, 0.077 \mathrm{mmol}$), $\mathrm{ZnI}_{2}(49.2 \mathrm{mg}, 0.154 \mathrm{mmol}), \mathrm{I}_{2}(195.6 \mathrm{mg}, 0.77$ $\mathrm{mmol}), \mathrm{KI}(141.1 \mathrm{mg}, 0.85 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(319.2 \mathrm{mg}$, 2.31 mmol$)$. 1,2-Dichlorobenzene $(5 \mathrm{ml})$ was then added. The reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 12 h in pre-heated oil bath. After cooling to room temperature, the reaction was diluted with EtOAc and filtered over glass filter. The filtrate was concentrated and purified by column chromatography on silica gel.

Characterization of 3a-3n:

3a
6-Chloro-2-methyl-[1,2,4]triazolo[1,5-b]pyridazine (3a): light yellow solid; 63% yield; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta=8.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6) $\delta=162.8,146.3,144.3,127.2,125.1,14.9$. LC/MS: 100% purity, $[\mathrm{M}+\mathrm{H}]^{+}=169$. HR-MS calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 169.0279. found: 169.0281.

3b
6-Chloro-2-phenyl-[1,2,4]triazolo[1,5-b]pyridazine (3b): light yellow solid; 63% yield; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta=8.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6) $\delta=162.3,146.9,145.1,131.1$, 130.2, 129.5, 127.8, 127.2, 125.7. LC/MS: 99.2\% purity, $[\mathrm{M}+\mathrm{H}]^{+}=231$. HR-MS calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 231.0438$. found: 231.0437.

6-Chloro-2-(4-fluoro-phenyl)-[1,2,4]triazolo[1,5-b]pyridazine (3c): light yellow solid; 52\% yield ; ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{DMSO-d6}\right) \delta=8.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.26-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.87$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6) $\delta=165.7,162.4$, $161.4,147.0,145.2,129.6(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 127.8,126.8(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 125.8,116.7(\mathrm{~d}, J=21.7$ Hz). ${ }^{19} \mathrm{~F}(282 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \delta=-109.9 . \mathrm{LC} / \mathrm{MS}: 99.4 \%$ purity, $[\mathrm{M}+\mathrm{H}]+=249$. HR-MS calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{ClFN}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 249.0345 . found: 249.0343 .

3d
6-Chloro-2-p-tolyl-[1,2,4]triazolo[1,5-b]pyridazine (3d): light yellow solid; 36\% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta=8.56-8.53(\mathrm{~m}, 1 \mathrm{H}), 8.15-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.89-7.83(\mathrm{~m}, 1 \mathrm{H})$, $7.40(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta=162.4,146.7,145.1$, 141.0, 130.1, 127.7, 127.4, 127.1, 125.6, 117.5, 21.5. LC/MS: 99.1\% purity, $[\mathrm{M}+\mathrm{H}]^{+}=245$. HR-MS calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 245.0601$. found: 245.0594 .

6-Chloro-2-(4-trifluorom ethoxy-phenyl)-[1,2,4]triazolo[1,5-b]pyridazine (3e): light yellow solid; 18\% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta=8.62-8.59(\mathrm{~m}, 1 \mathrm{H}), 8.25-8.21(\mathrm{~m}, 1 \mathrm{H})$, 7.93-7.90 (m, 1H), 7.67-7.61 (m, 1H), 7.49-7.42 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6\right) \delta$ $=161.07,150.39,147.2,145.3,129.4(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}), 128.0,126.0,122.0 . \mathrm{LC} / \mathrm{MS}: 98.1 \%$ purity, $[\mathrm{M}+\mathrm{H}]^{+}=315$. HR-MS calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 315.0268$. found: 315.026.

6-Chloro-2-(2-fluoro-phenyl)-[1,2,4]triazolo[1,5-b]pyridazine (3f): light yellow solid; 34\% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta=8.61-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.38-8.35(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.90(\mathrm{~m}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta=161.7,159.1-158.9(\mathrm{t}, \mathrm{J}=$ $19.0 \mathrm{~Hz}, 5.0 \mathrm{~Hz}), 147.3,144.5,133.0(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 128.0,126.0,125.4$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}), 118.1(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 117.3(\mathrm{~d}, J=21.0 \mathrm{~Hz}) . \mathrm{LC} / \mathrm{MS}: 97.5 \%$ purity, $[\mathrm{M}+\mathrm{H}]^{+}$ $=249 . \mathrm{HR}-\mathrm{MS}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{ClFN}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 249.0346$. found: 249.0343 .

3 g
6-Chloro-2-(2-chloro-phenyl)-[1,2,4]triazolo[1,5-b]pyridazine (3g):
light yellow solid; 22\% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta=8.65-8.62(\mathrm{~m}, 1 \mathrm{H}), 8.07(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta=160.9,147.5,144.6,132.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 132.1,131.4,129.2,128.0(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz})$, 126.1. LC/MS: 99.2\% purity, $[\mathrm{M}+\mathrm{H}]^{+}=265.1 . \mathrm{HR}-\mathrm{MS}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 265.0049$. found: 265.0048.

6-Chloro-2-(2-methoxy-phenyl)-[1,2,4]triazolo[1,5-b]pyridazine (3h): light yellow solid; 22% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta=8.52-8.49(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.97-7.90 (m, 1H), $7.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.12(\mathrm{t}, J=9.0 \mathrm{~Hz}, 21 \mathrm{~Hz}$, 1H), 7.09-7.07 ($\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta=161.3$, 158.1, 146.7, 144.0, 132.2, 131.3, 127.6, 125.4, 120.9, 119.3, 112.9, 56.2. LC/MS: 90.2\% purity, $[\mathrm{M}+\mathrm{H}]^{+}=261 . \mathrm{HR}-\mathrm{MS}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 261.0548$. found: 261.0543.

6-Chloro-2-(2-trifluorom-phenyl)-[1,2,4]triazolo[1,5-b]pyridazine (3i): light yellow solid; 39% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta=8.61-8.59(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.93(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.79-7.75(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, DMSO-d6) $\delta=$ 161.4, 147.7, 144.4, $133.1(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}), 131.1,129.5(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz})$, 128.2, 127.9, 127.4-127.2 (m), 126.2, 125.5, 122.8. ${ }^{19} \mathrm{~F}(376 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \delta=-56.9 . \mathrm{LC} / \mathrm{MS}: 97.5 \%$ purity, $[\mathrm{M}+\mathrm{H}]^{+}=299$. HR-MS calcd for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{ClF}_{3} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 299.0315. found: 299.0311 .

6-Chloro-2-(3-methoxy-phenyl)-[1,2,4]triazolo[1,5-b]pyridazine (3j): light yellow solid; 27% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta=8.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 2 \mathrm{H})$, 6 / 60
7.66-7.64 (m, 1H), $7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta=162.1,160.0,147.0,145.0,131.4,130.7,127.7,125.7,119.5,117.0,112.0$, 55.6. LC/MS: 98.9% purity, $[\mathrm{M}+\mathrm{H}]^{+}=261$. HR-MS calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 261.0551. found: 261.0543 .

6-Chloro-2-(Thiophen-2-yl)-[1,2,4]triazolo[1,5-b]pyridazine (3k): light yellow solid; 30\% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta=8.48(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.79(\mathrm{~m}, 3 \mathrm{H})$, 7.25-7.22 (m, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta=158.6,146.8,145.0,132.9,130.1$, 129.0 (d, J = 26.0 Hz), 127.4, 125.9. LC/MS: 89.7% purity, $[\mathrm{M}+\mathrm{H}]^{+}=237.1$. HR-MS calcd for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClN}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 237.0014$. found: 237.0002 .

6-Chloro-2-(Pyridin-4-yl)-[1,2,4]triazolo[1,5-b]pyridazine (31): light yellow solid; 39\% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta=9.33(\mathrm{~s}, 1 \mathrm{H}), 8.73-8.72(\mathrm{~m}, 1 \mathrm{H}), 8.57-8.48(\mathrm{~m}, 2 \mathrm{H})$, 7.89 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta=160.2$, 151.9, 148.1, 147.4, 145.2, 134.6, 128.0, $126.2(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 124.6$. LC/MS: 99.3% purity, $[\mathrm{M}+\mathrm{H}]^{+}=232 . \mathrm{HR}-\mathrm{MS}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{ClN}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 232.0389$. found: 232.039.

6-Chloro-2-(2, 4-dichloro-phenyl)-[1,2,4]triazolo[1,5-b]pyridazine (3m): light yellow solid; 22% yield; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta=8.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.59(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6) $\delta=160.0,147.6$, 144.3, 136.0, $133.5(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}), 130.9,128.2(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 2.2 \mathrm{~Hz}), 126.1 . \mathrm{LC} / \mathrm{MS}: 87.8 \%$ purity, $[\mathrm{M}+\mathrm{H}]^{+}=299$. HR-MS calcd for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}:$298.9655. found: 298.9655 . 7 / 60

6-Chloro-8-methoxy-2-methyl-[1,2,4]triazolo[1,5-b]pyridazine (3n): light yellow solid; 33% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta=7.28(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d6) $\delta=161.1,155.5,147.2,139.8,103.5,58.4,14.7$. LC/MS: 100% purity, $[\mathrm{M}+\mathrm{H}]^{+}=199$. HR-MS calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 199.0387$. found: 199.0387 .

S-3. Gram-Scale Preparation of 3a

6-Chloro-2-methyl-[1,2,4]triazolo[1,5-b]pyridazine (3a): under the standard conditions described above, 1a ($2.0 \mathrm{~g}, 15.4 \mathrm{mmol}$), 2a (100 ml), CuBr ($220.9 \mathrm{mg}, 1.54 \mathrm{mmol}$), 1,10-phenanthroline ($277.5 \mathrm{mg}, 1.54 \mathrm{mmol}$), ZnI_{2} ($983.1 \mathrm{mg}, 3.08 \mathrm{mmol}$), $\mathrm{I}_{2}(3.9 \mathrm{~g}, 15.4$ $\mathrm{mmol})$, $\mathrm{KI}(2.8 \mathrm{~g}, 16.9 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.4 \mathrm{~g}, 46.2 \mathrm{mmol}$), in 1,2-Dichlorobenzene (20 $\mathrm{ml})$, afforded 3 a (1.95 g , 75% yield) as a light yellow solid.

S-4. Procedure and analytical date for the derivatives of 3a

1. Synthesis of 4 a

To a 25 ml round bottom Schlenk was added 3a ($100 \mathrm{mg}, 0.59 \mathrm{mmol}$), phenylboronic acid ($108.3 \mathrm{mg}, 0.89 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(41.4 \mathrm{mg}, 0.059 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(187.6 \mathrm{mg}, 1.77$ $\mathrm{mmol})$, dioxane $(8 \mathrm{ml}), \mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$. The reaction vessel was vacuumed and backfilled with N_{2} (3 times). The reaction mixture was heated at $80{ }^{\circ} \mathrm{C}$ overnight. The reaction was cooled to r.t., diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel flash chromatography.

4a
2-Methyl-6-phenyl-[1,2,4]triazolo[1,5-b]pyridazine (4a): light yellow solid; 68% yield; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta=8.36(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.13(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.08-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6) $\delta=$ $162.6,151.4,144.3,134.7,131.9(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}), 130.8,129.5,129.2(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 127.4$, 125.4, 121.8, 14.9. LC/MS: 98.7\% purity, $[\mathrm{M}+\mathrm{H}]^{+}=211$. HR-MS calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 211.0988$. found: 211.0984 .

2. Synthesis of $4 b$

To a 25 ml round bottom Schlenk was added 3 a ($100 \mathrm{mg}, 0.59 \mathrm{mmol}$), arylethynylene $(125.6 \mathrm{mg}, 0.89 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(13.2 \mathrm{mg}, 0.059 \mathrm{mmol}), \quad$ RuPhos $(55.0 \mathrm{mg}, 0.118 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(179.1 \mathrm{mg}, 1.77 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{ml})$. The reaction vessel was vacuumed and backfilled with N_{2} (3 times). The reaction mixture was heated at $80{ }^{\circ} \mathrm{C}$ overnight. The reaction was cooled to r.t., diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel flash chromatography.

[3-(2-Methyl-[1,2,4]triazolo[1,5-b]pyridazin-6-ylethynyl)-phenyl]-acetonitrile (4b): light yellow solid; 59% yield; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta=8.35(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.82-7.76 (t, J = 9.0 Hz, 9.0 Hz, 1H), 7.66-7.62 (m, 2H), 7.54-7.47 (m, 2H), $4.10(\mathrm{~s}, 2 \mathrm{H}), 2.53$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d6) $\delta=163.4,144.4,137.7,132.8,131.9(\mathrm{~d}, \mathrm{~J}=21.0 \mathrm{~Hz})$, 130.4 (d, $J=26.2 \mathrm{~Hz}), 126.4,125.3,121.2,119.2,92.1,85.3,22.5,14.9 . \mathrm{LC} / \mathrm{MS}: 99.6 \%$ purity, $[\mathrm{M}+\mathrm{H}]^{+}=274 . \mathrm{HR}-\mathrm{MS}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{5}[\mathrm{M}+\mathrm{H}]^{+}:$274.1093. found: 274.1093.

S-5. Procedure for 6

5
$1 \mathrm{~mol} \% \mathrm{CuCl}_{2 .}, 2 \mathrm{~mol} \%$ 3a,
CO_{2}
$\xrightarrow[\text { solvent-free, } 100{ }^{\circ} \mathrm{C}, 7 \mathrm{~h}]{2 \mathrm{~mol} \% \mathrm{DMAP}}$

6
$\mathrm{CO}_{2}(\mathrm{~g})$ from a gas balloon was allowed to react with $5(500 \mathrm{mg}, 4.16 \mathrm{mmol}), \mathrm{CuCl}_{2}(5.6$ $\mathrm{mg}, 0.04 \mathrm{mmol})$, $3 \mathrm{a}(13.5 \mathrm{mg}, 0.08 \mathrm{mmol})$, DMAP $(9.8 \mathrm{mg}, 0.08 \mathrm{mmol})$ at $100{ }^{\circ} \mathrm{C}$ for 7 h in pre-heated oil bath. GC-MS of the crude reaction mixture in EtOAc showed 82% conversion of the starting epoxide to the desired product 6 .

S-6. Procedure for 7

To an oven dried Schlenk tube were added oxazoline ($389 \mathrm{mg}, 2.4 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(44.5$ $\mathrm{mg}, 0.2 \mathrm{mmol}$), dppe ($96 \mathrm{mg}, 0.24 \mathrm{mmol}$) and LiOtBu ($320 \mathrm{mg}, 4.0 \mathrm{mmol}$) under N_{2}. The tube was degassed with N_{2} three times and addition of $\mathbf{3 a}(340 \mathrm{mg}, 2 \mathrm{mmol})$ to the reaction vessel was followed by the addition of anhydrous Dioxane (5 ml). The reaction mixture was stirred in an oil bath at $100{ }^{\circ} \mathrm{C}$ for 12 h , and then cooled to room temperature, diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with EtOAc. The combined organic layers were dried over sodium sulfate, filtered and concentrated. The residue was purified by silica gel flash chromatography.

6-(4-Benzyl-4,5-dihydro-oxazol-2-yl)-2-methyl-[1,2,4]triazolo[1,5-b]pyridazine (7): light yellow solid; 70% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.06(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 5 \mathrm{H}), 4.65-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.45(\mathrm{t}, J=12.0 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.26-4.22 (t, $J=8.0 \mathrm{~Hz}, 8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=164.6,160.4,145.2,141.5,137.2,129.2,128.6,126.7,124.0,122.2$, 73.0, 68.1, 41.4, 15.0. $\mathrm{HR}-\mathrm{MS}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 316.1169$. found: 316.1160.

S-7. Procedure for 8

To a CuOTf • 1/2benzene ($10 \mathrm{~mol} \%$), KOtBu (0.12 eq) and ligand 7 ($12 \mathrm{~mol} \%$) in THF (2 ml) under N_{2}, trifluroacetophenone (1 eq) and alkyne (2 eq) were added at room temperature. The mixture was warmed up to $60^{\circ} \mathrm{C}$. After 12 h , the reaction mixture was diluted with AcOEt , and SiO_{2} was added. Filtration, removal of the solvent gave crude product as brown oil. GC-MS of the crude reaction mixture in EtOAc showed 99\% conversion of the starting trifluroacetophenone to the desired product 8 .

S-8. References

1. For synthesis of 3a, 3b, please see: Y. Tamura, J. H. Kim, M. Ikeda, J. Heterocyclic. Chem. 1975, 12, 107-108.
2. For synthesis of 6, please see: A. Kilic, A. A. Palali, M. Durgun, Z. Tasci, M. Ulusoy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013, 113, 432-438.

S-9. NMR Spectra

3a

mAU

Peak Table
PDA Ch1 254 nm

Peak $\boldsymbol{\pi}$	Ret. Time	Height	Height $\%$	Area	Area $\%$
1	0.669	261613	100.000	303476	100.000
Total		261613	100.000	303476	100.000

-8sing

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Height\%	Area	Area\%
1	0.682	4363	0.178	6757	0.194
2	0.929	12435	0.508	13806	0.397
3	1.012	6764	0.277	7095	0.204
4	1.071	2421983	99.037	3450859	99.205
Total		2445545	100.000	3478517	100.000

Line\#: 2 R.Time:1.081(Scan\#:140)
MassPeaks:630
Spectrum Mode:Single 1.081(140) BasePeak:231(1674587)
BG Mode:None Segment 1 - Event 1

Line\#:1 R.Time:1.098(Scan\#:142)
MassPeaks:434
Spectrum Mode:Averaged 1.090•1.106(141-143) BasePeak:249(620070)
BG Mode:Calc Segment 1 - Event 1

mAU

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Height	Height\%	Area	Area\%
1	0.801	21350	0.671	20146	0.365
2	1.011	9224	0.290	9805	0.178
3	1.060	11386	0.358	12799	0.232
4	1.139	3131172	98.371	5468693	99.129
5	1.355	9901	0.311	5292	0.096
Total		3183033	100.000	5516735	100.000

Lineच̈:1 R.Time:1.140(Scan\#:147)
MassPeaks:470
Spectrum Mode:Averaged 1.131-1.148(146-148) BasePeak:245(1650455)
BG Mode:Calc Segment 1 - Event 1

Peak Table
PDA Ch1 254 nm

Peak $\#$	Ret. Time	Height	Height\%	Area	Area\%
1	0.750	40047	3.561	40127	1.897
2	1.240	1084424	96.439	2075182	98.103
Total		1124471	100.000	2115309	100.000

Line\#:1 R.Time:1.240(Scan\#:159)
MassPeaks:382
Spectrum Mode:Averaged 1.231•1.248(158-160) BasePeak:315(611193)
BG Mode:Calc Segment 1 - Event 1

culd

mAU

Peak Table
PDA Ch1 254 nm

Peak\%	Ret. Time	Height	Height\%	Area	Area\%
1	0.565	3651	0.237	2870	0.142
2	0.811	3054	0.198	3095	0.154
3	0.941	34292	2.227	36707	1.821
4	1.227	1491056	96.844	196568	97.516
5	1.246	4132	0.268	3799	0.188
6	1.359	3465	0.225	3605	0.179
Total		1539650	100.000	2015945	100.000

Line\#̈:1 R.Time:1.023(Scan\#:133)
MassPeaks:353
Spectrum Mode:Averaged 1.015-1.031(132-134) BasePeak:249(896040)
BG Mode:Calc Segment $1 \cdot$ Event 1

צixgex

Peak Table

Peak\#	Ret. Time	Height	Height\%	Area	Area\%
1	0.807	2307	0.211	2312	0.175
2	1.023	2929	0.268	3530	0.268
3	1.079	1082494	99.036	1308083	99.201
4	1.243	2311	0.211	2119	0.161
5	1.355	2989	0.274	2578	0.195
Tota		1093030	100.000	1318622	100.000

Line\#:1 R.Time:1.081(Scan\#:140)
MassPeaks:439
Spectrum Mode:Averaged 1.073-1.090(139-141) BasePeak:265.05(1096597) BG Mode:Calc Segment 1 - Event 1

 $\underset{i}{\text { i }}$

mAU

Peak Table

Peak ${ }^{\text {F }}$	Ret. Time	Height	Height\%	Area	Area\%
1	0.872	25920	2.648	35617	3.693
2	0.959	901845	92.118	870550	90.261
3	1.199	15870	1.621	19899	2.063
4	1.229	16122	1.647	19952	2.069
5	1.444	19252	1.966	18467	1.915
Total		979009	100.000	964484	100.000

Line"̈:1 R.Time:0.956(Scan\#:125)
MassPeaks:397
Spectrum Mode:Averaged 0.948-0.965(124-126) BasePeak:261(534678)
BG Mode:Calc Segment $1 \cdot$ Event 1

mAU

PDACh1 254nm
Peak Table

Peak	Ret. Time	Height	Height\%	Area	Area\%
1	0.599	2930	0.071	2872	0.060
2	0.688	11775	0.287	15061	0.314
3	0.810	24850	0.606	24568	0.512
4	0.857	5716	0.139	6831	0.142
5	0.901	4300	0.105	3973	0.083
6	0.941	5131	0.125	6322	0.132
7	0.968	3478	0.085	4105	0.085
8	1.015	6753	0.165	8671	0.181
9	1.113	3995370	97.417	4685202	97.579
10	1.176	3796	0.093	2521	0.053
11	1.248	11373	0.277	14735	0.307
12	1.355	20114	0.490	20874	0.435
13	1.696	5711	0.139	5706	0.119
Total		4101296	100.000	4801441	100.000

Linef:1 R.Time:1.115(Scan\#:144)
MassPeaks:528
Spectrum Mode:Averaged 1.106-1.123(143-145) BasePeak:299(4724019)
BG Mode:Calc Segment 1 - Event 1

mAU

Peak Table

Peak ${ }^{\text {\% }}$	Ret. Time	Height	Height\%	Area	Area\%
1	0.641	14245	0.686	13471	0.422
2	0.807	4907	0.236	4912	0.154
3	1.043	2117	0.102	1945	0.061
4	1.077	2042714	98.333	3160285	98.983
5	1.357	8955	0.431	7747	0.243
6	1.696	4409	0.212	4407	0.138
Total		2077347	100.000	3192767	100.000

Line\#\#:1 R.Time:1.073(Scan\#:139)
MassPeaks:367
Spectrum Mode:Averaged 1.065-1.081(138-140) BasePeak:261(817785)
BG Mode:Calc Segment 1 - Event 1

89 888. eqgind

PDACh1 254nm

Peak	Ret. Time	Height	Height\%	Area	Area\%
1	0.557	173905	3.783	149008	2.419
2	0.592	18952	0.412	19246	0.312
3	0.812	4786	0.104	5591	0.091
4	0.865	12224	0.266	13102	0.213
5	0.902	332530	7.234	349727	5.678
6	0.935	64412	1.401	78248	1.270
7	1.011	3973098	86.432	5528420	89.764
8	1.285	11455	0.249	10199	0.166
9	1.354	5407	0.118	5330	0.087
Tota		4596769	100.000	6158870	100.000

Line\#:2 R.Time:1.015(Scan\#:132)
MassPeaks:439
Spectrum Mode:Averaged 1.006*1.023(131-133) BasePeak:237.10(371976)
BG Mode:Calc Segment 1 . Event 1

$\xrightarrow[y 2]{ }$

Line\#:1 R.Time:0.656(Scan\#:89)
MassPeaks:424
Spectrum Mode:Averaged 0.648-0.665(88-90) BasePeak:232(138229)
BG Mode:Calc Segment $1 \cdot$ Event 1

Lineच̈:3 R.Time:1.215(Scan\#:156)
MassPeaks:388
Spectrum Mode:Averaged 1.206•1.223(155-157) BasePeak:299(54822)
BG Mode:Calc Segment 1 - Event 1

$3 n$

mAU

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Height	Height $\%$	Area	Area\%
1	0.723	1507282	100.000	1418910	100.000
Total		1507282	100.000	1418910	100.000

Line\#̈:1 R.Time:0.723(Scan\#:97)
MassPeaks:372
Spectrum Mode:Averaged 0.715-0.731(96-98) BasePeak:199(734375)
BG Mode:Calc Segment 1 - Event 1

$\underbrace{\substack{x 88 \%=2}}$

4a

PDA Ch1 254 nm

Peak	Ret. Time	Height	Height\%	Area	Area\%
1	0.810	4355	0.107	4107	0.063
2	0.918	3997883	97.881	6427469	98.715
3	1.012	69984	1.713	67356	1.034
4	1.283	12212	0.299	12188	0.187
Tota		4084434	100.000	6511120	100.000

Line\#̈:1 R.Time:0.915(Scan\#:120)
MassPeaks:443
Spectrum Mode:Averaged 0.906-0.923(119-121) BasePeak:211(2360958)
BG Mode:Calc Segment 1 - Event 1

Peak Table
PDA Ch1 254 nm

Peak*	Ret. Time	Height	Height\%	Area	Area\%
1	0.693	7139	0.177	8108	0.089
2	0.910	2411	0.060	2020	0.022
3	0.961	3996101	99.265	9071081	99.695
4	1.221	20042	0.498	17649	0.194
Tota		4025694	100.000	9098858	100.000

Line\#:1 R.Time:0.965(Scan\#:126)
MassPeaks:550
Spectrum Mode:Averaged 0.956-0.973(125-127) BasePeak:274(1577027)
BG Mode:Calc Segment 1 - Event 1

$11 / 1$

气合
$\stackrel{?}{7}$
$\frac{8}{6}$

GC－MS spectrum of product 8

丰度

时间－－＞

$\#$	Time	Height	Area	Area \％
1	13.120	4992043	76776930	99.177%
2	13.232	79946	636887	0.823%

丰度

m／z－－＞

47 ／ 60

S-10. LC-MS spectra of formation of 3a

$\mathrm{t}=1 \mathrm{~h}$

<Chromatogram>

mAU

Peak Table

PDA Ch1 254 nm
\left.Peak Ret. Time Height Height\% Area Area\% 1 0.124 357211 10.913 250065 6.285 2 0.154 150568 4.600 156152 3.925 3 0.201 131738 4.025 290622 7.305 4 0.461 10258 0.313 19005 0.478 5 0.646 718677 21.957 1253845 31.515 6 0.687 172735 5.277 184702 4.642 7 0.754 29178 0.891 47511 1.194 8 0.792 83979 2.566 178313 4.482 9 0.877 16567 0.506 18747 0.471 10 0.928 53462 1.633 81057 2.037 11 0.993 272116 8.314 442314 11.117 12 1.182 1273983 38.922 1054600 26.507 13 1.245 2689 0.082 1660$\right] 0.042$
Total

Mass Spectrum
Linefi:1 R.Time:0.128(Scan\#:21)
MassPeaks:388
Spectrum Mode:Averaged 0.119-0.136(20-22) BasePeak:191(31740) BG Mode:Calc Segment 1 - Event 1

Linef̈:2 R.Time:0.203(Scan\#:30)
MassPeaks:404
Spectrum Mode:Averaged 0.194-0.211(29.31) BasePeak:130(576714)
BG Mode: Calc Segment 1 - Event 1

Lineच̈:3 R.Time:0.644(Scan\#:83)
MassPeaks:412
Spectrum Mode:Averaged $0.636 \cdot 0.653(82-84)$ BasePeak:181(1215288)
BG Mode:Calc Segment 1 - Event 1

Lineت̈:4 R. Time:0.994(Scan\#:125)
MassPeaks:347
Spectrum Mode:Averaged 0.986-1.003(124-126) BasePeak:279(98412)
BG Mode:Calc Segment 1 - Event 1

Lineت̈:5 R.Time:1.178(Scan\#:147)
MassPeaks:396
Spectrum Mode:Averaged 1.169-1.186(146.148) BasePeak:279(2318)
BG Mode:Calc Segment 1 - Event 1

$t=2 \mathrm{~h}$

<Chromatogram>

mAU

Peak Table
PDA Ch1 254 nm

Peak	Ret. Time	Height	Height $\%$	Area	Area\%
1	0.125	203841	11.008	150370	7.215
2	0.151	75819	4.094	71607	3.436
3	0.203	52467	2.833	117651	5.645
4	0.449	5322	0.287	11117	0.533
5	0.624	423414	22.866	761325	36.528
6	0.681	132132	7.136	122513	5.878
7	0.747	39879	2.154	56498	2.711
8	0.773	15392	0.831	18119	0.869
9	0.795	12486	0.674	13949	0.669
10	0.835	9678	0.523	14397	0.691
11	0.869	13178	0.712	13390	0.642
12	0.916	26212	1.416	32760	1.572
13	0.968	55271	2.985	128917	6.185
14	1.176	782900	42.279	568810	27.291
15	1.238	3760	0.203	2791	0.134
Total		1851751	100.000	2084213	100.000

Mass Spectrum
Line\#\#:1 R.Time:0.128(Scan\#:21)
MassPeaks:373
Spectrum Mode:Averaged 0.119-0.136(20-22) BasePeak:191(24141)
BG Mode:Calc Segment 1 - Event 1

Line\#̈:2 R.Time:0.203(Scan\#:30)
MassPeaks:429
Spectrum Mode:Averaged 0.194-0.211(29-31) BasePeak:130(279290)
BG Mode:Calc Segment 1 . Event 1

Lineت̈:3 R.Time:0.619(Scan\#:80)
MassPeaks:395
Spectrum Mode:Averaged 0.611-0.628(79-81) BasePeak:181(980147)
BG Mode:Calc Segment 1 - Event 1

Lineت̈:4 R.Time:0.678(Scan\#:87)
MassPeaks:424
Spectrum Mode:Averaged 0.669-0.686(86-88) BasePeak:169(635992)
BG Mode:Calc Segment 1 - Event 1

Line\#̈:5 R.Time:0.969(Scan\#:122)
MassPeaks:319
Spectrum Mode:Averaged 0.961•0.978(121•123) BasePeak:181(23695)
BG Mode:Calc Segment 1 - Event 1

Lineif:6 R.Time:1.178(Scan\#:147)
MassPeaks:389
Spectrum Mode:Averaged 1.169-1.186(146.148) BasePeak:427(2406)
BG Mode:Calc Segment 1 - Event 1

Mass Spectrum
Line\#:1 R.Time:0.128(Scan\#:21)
MassPeaks:393
Spectrum Mode:Averaged 0.119-0.136(20-22) BasePeak:191(33234)
BG Mode:Calc Segment 1 - Event 1

Lineff:2 R.Time:0.628(Scan\#:81)
MassPeaks:400
Spectrum Mode:Averaged 0.619-0.636(80-82) BasePeak:181(1192670)
BG Mode:Calc Segment 1 - Event 1

Lineت̈:3 R.Time:0.686(Scan\#:88)
MassPeaks:426
Spectrum Mode:Averaged 0.678-0.694(87-89) BasePeak:169(1144405)
BG Mode:Calc Segment 1 - Event 1

Lineत̈: 4 R. Time:0.969(Scan\#:122)
MassPeaks:329
Spectrum Mode:Averaged 0.961-0.978(121-123) BasePeak:279(37482)
BG Mode:Calc Segment 1 - Event 1

Lineच̈:5 R.Time:1.178(Scan\#:147)
MassPeaks:375
Spectrum Mode:Averaged 1.169-1.186(146-148) BasePeak:101(4130)
BG Mode:Calc Segment 1 - Event 1

$\mathrm{t}=4 \mathrm{~h}$

<Chromatogram>

mAU

PDA Ch1 254 nm

Peak	Ret. Time	Height	Height\%	Area	Area\%
1	0.125	206054	11.707	147533	8.319
2	0.158	19853	1.128	23294	1.313
3	0.204	12495	0.710	24714	1.394
4	0.470	5238	0.298	9921	0.559
5	0.618	345985	19.657	607651	34.263
6	0.686	160763	9.134	129348	7.293
7	0.752	35901	2.040	36198	2.041
8	0.799	10626	0.604	16895	0.953
9	0.839	5621	0.319	9163	0.517
10	0.874	18235	1.036	16230	0.915
11	0.943	19743	1.122	48488	2.734
12	1.181	919538	52.246	704056	39.699
Total		1760081	100.000	1773492	100.000

Mass Spectrum
Line\#\#:1 R.Time:0.128(Scan\#:21)
MassPeaks:396
Spectrum Mode:Averaged 0.119-0.136(20-22) BasePeak:191(42131)
BG Mode:Calc Segment 1 - Event 1

Lineتf:2 R.Time:0.619(Scan\#:80)
MassPeaks:404
Spectrum Mode:Averaged 0.611-0.628(79-81) BasePeak:181(1154377)
BG Mode:Calc Segment 1 - Event 1

Lineت̈:3 R.Time:0.686(Scan\#:88)
MassPeaks:441
Spectrum Mode:Averaged 0.678-0.694(87-89) BasePeak:169(1056608)
BG Mode: Calc Segment 1 - Event 1

Line\#: 4 R.Time:1.178(Scan\#:147)
MassPeaks:389
Spectrum Mode:Averaged 1.169-1.186(146.148) BasePeak:293(3561)
BG Mode:Calc Segment 1 - Event 1

<Chromatogram>

$m A U$

Peak Table
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Height $\%$	Area	Area\%
1	0.126	149048	8.179	111871	5.928
2	0.154	18547	1.018	23678	1.255
3	0.209	9826	0.539	21178	1.122
4	0.457	5513	0.302	10858	0.575
5	0.619	350658	19.241	607135	32.169
6	0.688	181479	9.958	135167	7.162
7	0.754	37388	2.052	40719	2.158
8	0.801	12316	0.676	20425	1.082
9	0.841	5830	0.320	10605	0.562
10	0.876	19265	1.057	17523	0.928
11	0.943	17490	0.960	41298	2.188
12	1.182	1012725	55.570	844559	44.750
13	1.245	2334	0.128	2285	0.121
Total		1822418	100.000	1887302	100.000

Line\#̈:1 R.Time:0.128(Scan\#:21)
Mass Spectrum
MassPeaks:384
Spectrum Mode:Averaged 0.119-0.136(20-22) BasePeak:191(20480)
BG Mode:Calc Segment 1 - Event 1

Line\#f:2 R.Time:0.619(Scan\#:80)
MassPeaks:373
Spectrum Mode:Averaged 0.611-0.628(79-81) BasePeak:181(1101305)
BG Mode:Calc Segment 1 - Event 1

Line\#f:3 R.Time:0.686(Scan\#:88)
MassPeaks:421
Spectrum Mode:Averaged 0.678-0.694(87-89) BasePeak:169(981361)
BG Mode:Calc Segment 1 . Event 1

Lineच::4 K.lıme:1.186(১canच:146)
MassPeaks:379
Spectrum Mode:Averaged 1.178-1.194(147-149) BasePeak:101(15900)
BG Mode:Calc Segment 1 - Event 1

$t=12 \mathrm{~h}$

<Chromatogram>

PDA Ch1 254 nm

Peak	Ret. Time	Height	Height\%	Area	Area\%
1	0.433	3253	0.101	3313	0.077
2	0.494	671849	20.836	839896	19.509
3	0.570	218048	6.762	265948	6.177
4	0.602	303498	9.412	499546	11.603
5	0.645	13275	0.412	16741	0.389
6	0.682	386589	11.989	415124	9.642
7	0.733	10864	0.337	17187	0.399
8	0.755	11269	0.349	13854	0.322
9	0.808	11534	0.358	11511	0.267
10	0.855	5226	0.162	8414	0.195
11	0.894	21315	0.661	21684	0.504
12	0.943	6429	0.199	5902	0.137
13	1.221	1561384	48.422	2186074	50.778
Total		3224534	100.000	4305195	100.000

Lineच̈:1 R.Time:0.498(Scan\#:70)
Mass Spectrum
MassPeaks:404
Spectrum Mode:Averaged 0.490-0.506(69-71) BasePeak:181(81021)
BG Mode: Calc Segment 1 - Event 1

Lineتf:2 R.Time:0.573(Scan\#:79)
MassPeaks:323
Spectrum Mode:Averaged 0.565*0.581(78-80) BasePeak:103(2108)
BG Mode:Calc Segment 1 - Event 1

Linef̈:3 R.Time:0.606(Scan\#:83)
MassPeaks:352
Spectrum Mode:Averaged 0.598-0.615(82-84) BasePeak:181(27190)
BG Mode: Calc Segment 1 - Event 1

Lineت::4 R.Time:0.681(Scan\#:92)
MassPeaks:350
Spectrum Mode:Averaged 0.673-0.690(91-93) BasePeak:169(279411)
BG Mode:Calc Segment 1 - Event 1

Lineتf:5 R.Time:1.223(Scan\#:157)
MassPeaks:410
Spectrum Mode:Averaged 1.215-1.231(156-158) BasePeak:386(8559)
BG Mode:Calc Segment 1 - Event 1

