Electronic Supplementary Information to:

Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of 'bits'

Sebastian Bochmann,^a Amalio Fernandez-Pacheco,^b Andreas Neff,^c Mirza Mačković,^d Erdmann Spiecker,^d Katrin R. Siefermann,^c Russell Cowburn,^b Julien Bachmann^{a,†}

^a Friedrich-Alexander University of Erlangen-Nürnberg, Inorganic Chemistry, Egerlandstrasse 1, 91058 Erlangen, Germany

> ^b Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, UK

^c Leibniz Institute of Surface Modification (IOM), Permoserstrasse 15, 04318 Leipzig, Germany

^d Institute of Micro- and Nanostructure Research (WW9) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstr. 6, 91058 Erlangen, Germany

[†] julien.bachmann@fau.de

Contents:

Figure S1. Dependence of the remanence of ordered $Ni_{x}Co_{y}$ wire arrays on the composition.

Figure S2. Quantitative SEM-EDX profile of an isolated Ni₆₀Co₄₀ / Cu wire.

Figure S3. SEM micrograph of segmented NiCo / Cu wires in a large bundle.

Figure S4. UV-PEEM micrograph of an isolated segmented NiCo / Cu wire.

Figure S5. Individual TEM-EDX mappings of segmented wires.

Figure S6. XRD investigation into the origin of hcp-Ni₆₀Co₄₀.

Figure S1. Dependence of the remanence of ordered Ni_xCo_y wire arrays on the composition, obtained from SQUID magnetometry with the wires' long axis oriented parallel to the applied field (triangles) and perpendicular to it (squares).

Figure S2. Quantitative EDX line analysis of the wire presented in **Figure 7a** of the main text.

Figure S3. Scanning electron micrograph of segmented NiCo / Cu wires isolated from the alumina matrix by etching in potassium hydroxide.

Figure S4. Ultraviolet photoemission electron micrograph (UV-PEEM) of an isolated NiCo / Cu wire of 200 nm diameter and with 200 nm segment length.

Figure S5. TEM-EDX analysis of two segmented NiCo / Cu wires crossed: The HAADF signal and the individual EDX signals are presented separately for each element. The color coding follows the sulfate salts...

Figure S6. X-ray diffraction investigation of the origin of hcp-Ni₆₀Co₄₀ in segmented Ni₆₀Co₄₀ / Cu wires (blue line). Ni₆₀Co₄₀ wires grown from the binary electrolyte have the fcc crystal structure (black line), but Ni₆₀Co₄₀ wires grown from the ternary electrolyte already display the fcc peak at 41° (pink line). Thus, the mere presence of copper in the electrolyte suffices to change the crystal structure of the nickel-cobalt alloy deposited.