
Supporting Information

Molecular recognition with cyclodextrin polymer: a novel method for removing sulfides efficiently

Linlin Li, Zunbin Duan, Jinshe Chen, Yulu Zhou, Lijun Zhu, Yuzhi Xiang, and Daohong Xia*

State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, People's Republic of China

*Corresponding Author: xiadh@upc.edu.cn.

Figure S1 The TG curves of (A) α -CDP, (B) β -CDP, (C) γ -CDP, (D) (β & γ)-CDP.

Figures:

Journal Name

Figure S1. The TG curves of (A) α -CDP, (B) β -CDP,

(C) γ -CDP, (D) (β & γ)-CDP.

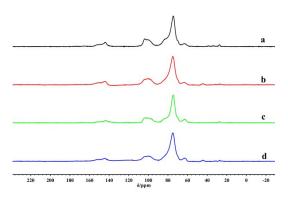
Figure S2. ¹³C solid-state NMR of (a) α -CDP, (b) β -CDP, (c) γ -CD, (d) (β & γ)-CDP.

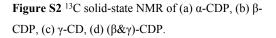
Figure S3. Regeneration performance of β -CDP for removing DBT.

Figure S4. Pseudo-second order kinetic of β -CDP for DBT.

Figure S5 Nitrogen adsorption isotherms of (A) fresh β -CDP and (B) used β -CDP.

Figure S6 FTIR spectra of (a) used β -CDP and (b) fresh β -CDP.


Equation E1:


Equation of The desulfurization efficiency in Table S1.

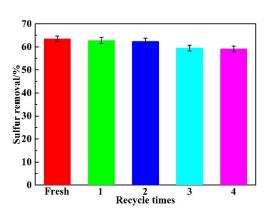

Tables:

Table S1. The desulfurization selectivity to DBT of β -CDP.

Figures:

Figure S3 Regeneration performance of β -CDP for removing DBT.

ARTICLE

Desulfurization conditions: temperature=25 °C, time=2h, mass ration of β -CDP to n-heptane solution of DBT is 1:40, initial sulfur concentration is 100 μ g·g⁻¹. All results were obtained in triplicate, and standard deviation is indicated by the error bars.

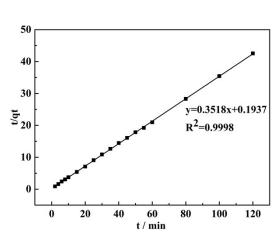
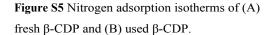



Figure S4 Pseudo-second order kinetic of β -CDP for DBT.

Desulfurization conditions: temperature= 25° C, time=2h, mass ration of β -CDP to n-heptane solution of DBT is 1:40.

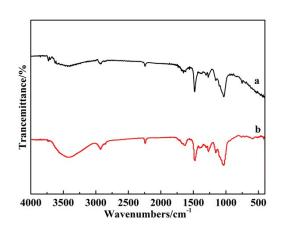
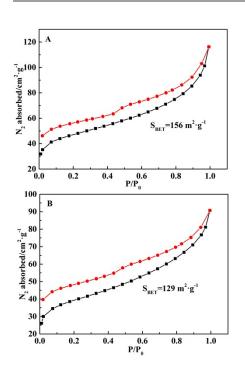



Figure S6 FTIR spectra of (a) used β -CDP and (b) fresh β -CDP.

Equation E1:

The desulfurization efficiency in Table S1 was calculated according to the following equation (E1).

 $Y=100\% (S_0-S_t) / S_0 = E1$

Where Y is the desulfurization efficiency for DBT, $S_0 (\mu g/g)$ is the initial sulfur concentration of DBT in n-heptane solution, and $S_t (\mu g/g)$ is the sulfur concentration of DBT in n-heptane solution after desulfurization.

Tables:

	Before desulfurization/µg·g ⁻¹			After desulfurization/ $\mu g \cdot g^{-1}$		DBT removal/%
	Total	DBT	Other sulfides	DBT	Other sulfides	
A	94.7	17.5	77.2	1.5	49.0	91.4
В	98.8	63.8	33.0	7.7	31.5	87.9

A: The sulfur concentration ratio of DBT:BT:Th:TP:EPS was 1:1:1:1:1

B: The sulfur concentration ratio of DBT:BT:Th:TP:EPS was 6:1:1:1:1

Desulfurization conditions: temperature=25°C, time=2h, mass ratio of β -CDP to n-heptane solution of mixed-sulfides is 1:20.