Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Occurrence and Attenuation of Pharmaceuticals and Their

Transformation Products in Rivers Impacted by Sewage Treatment Plant

Daoping Zha¹, Ying Li^{1*}, Li Wang², Cunman Yang¹, Guanghua Lu¹

 Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education; College of Environment, HoHai University, Nanjing, Jiangsu Province 210098, China

 Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, Jiangsu Province 210029, China

Chemicals and material

The purity of all pharmaceuticals and their TPs was higher than 98%. The standard substances antipyrine (ATP), naproxen (NPX), carbamazepin 10,11-epoxide (CBZE), 1-naphthol (1-NT) were obtained from Sigma-Aldrich Trading Co., Ltd (Shanghai, China). 2-Hydroxy ibuprofen (2-OHIPF), carboxy ibuprofen (CIPF), 4hydroxydiclofenac acid (4-OHDCF) were provided from Toronto Research Chemicals Inc (Toronto, Canada). Acetaminophen (ACE) was purchased from CND Isotopes (Pointe-Claire, Canada). Bezafibrate (BZB), 4-chlorobenzoic acid (4-CBA), ibuprofen (IPF), clofibric acid (CA), diclofenac acid (DCF), sulfadiazine (SDZ), sulfacetamide (STM), sulfamethoxazole (SMZ), N⁴-acetyl Sulfamethoxazole (NAST), sulfathiazole (ST), carbamazepin (CBZ), phenacetin (PHE), nifedipine (NP) were purchased from J&K Chemical (Beijing, China). All surrogate standards except IPF-d₃ were purchased from CND Isotopes (Pointe-Claire, Canada) and IPF-d₃ was obtained from Toronto Research Chemicals Inc (Toronto, Canada). HPLC-grade methanol and acetonitrile were purchased from Merck Corporation (Darmstadt, Germany). Ultrapure water was produced by a water purification system (Sichuan Ulupure Ultrapure Technology Company, China). The concentration of 1.0 g L⁻¹ monomolecular stock solutions in methanol were spared and 10 mg L⁻¹ working solutions of all substances were also spared in methanol. All standard analyte solutions were stored at -20° C.

River characteristic

Physicochemical parameters of rivers such as dissolved oxygen, electrical conductivity, temperature and pH were monitored three times a week that using handheld probes (Hach, USA) in the sampling process. Water flow velocity was measured by a model of LS1206B flow meter (Senlod, China) during the sampling course. And total suspended solids were collected from 0.45 μ m glass fiber filter that water samples through.

Analytical methods

A 98:2 (v/v) water/methanol solution (phase A) and methanol solution (phase B), both containing 0.05% formic acid, were used as mobile phases for positive-ion mode. Mobile phases of 98:2 (v/v) water/methanol solution with 5 mM ammonium acetate (phase A) and acetonitrile (phase B) were used for negative ion mode. Detection of the target compounds was carried out on a mass spectrometer with ESI. ESI was used as ion source at a temperature of 150°C, and detection and quantification of analytes was done in multiple-reaction-monitoring mode. Sulfadiazine (SDZ), sulfacetamide (STM), sulfathiazole (ST), sulfamethoxazole (SMZ), N₄-acetylsulfamethoxazole (NAST), carbamazepine (CBZ), carbamazepine-10,11-epoxide (CBZE), phenacetin (PHE), acetaminophen (ACE), and antipyrine (ATP) were detected in positive-ion mode. Bezafibrate (BZB), 4-chlorobenzoic acid (4-CBA), ibuprofen (IPF), 2-hydroxyibuprofen (2-OHIPF), carboxyibuprofen (CIPF), clofibric acid (CA), diclofenac acid (DCF), 4-hydroxydiclofenac acid (4-OHDCF), naproxen (NPX), 1-naphthol (1-NT), and nifedipine (NP) were detected in negative-ion mode.

Time (min)	Composition of mobile phase (%)			
Positive ion mode	А	В		
0	90	10		
2.5	90	10		
4	10	90		
5	10	90		
5.01	90	10		
6	90	10		
Negative ion mode	А	В		
0	90	10		
2.5	90	10		
4	10	90		
5	10	90		
5.01	90	10		
6	90	10		

Table S1. The composition of mobile phase in two ion modes.

C	precursor ion	product ion	cone	collision	ionization
Compound	(m/z)	(m/z)	voltage (V)	energy (eV)	mode
ACE-d ₃	155.07	92.92	26	22	ESI+
ACE ↑	152	110	40	12	ESI+
PHE	179.94	151.85	84	32	ESI+
ATP-d ₃	192	58.92	40	28	ESI+
ATP	189	55.92	40	28	ESI+
SMZ-d ₄	258.13	96.03	28	28	ESI+
STM ↑	215	156	17	12	ESI+
SDZ	251	92	25	27	ESI+
SMZ	254	156	25	16	ESI+
ST	256	92	23	25	ESI+
NAST↑	296	134	24	16	ESI+
CBZ-d ₁₀	246.97	175	30	42	ESI+
CBZ	236.97	178.87	30	34	ESI+
CBZE ↑	253.07	236	28	12	ESI+
IPF-d ₃	208.1	164	16	7	ESI-
IPF	205.1	161	16	7	ESI-
2-OHIPF↑	221.1	177	16	7	ESI-
CIPF↑	235.1	72.9	20	16	ESI-
DCF-d ₄	298	254	22	15	ESI-
DCF	294	250	22	15	ESI-
4-OHDCF↑	312	230	30	32	ESI+
CA-d ₄	217.2	131.01	20	18	ESI-
CA	213.13	127.01	24	16	ESI-
BZB-d ₆	366.3	274.12	30	18	ESI-
BZB	360.13	274.06	32	20	ESI-
4-CBA↑	155.03	111	24	10	ESI-
NPX-d ₃	232.1	173	22	16	ESI-
NPX	229.1	170	22	16	ESI-
NP	345.17	91.93	22	16	ESI-
1-NT	143.03	115	46	22	ESI-

Table S2. The mass spectrometer optimization parameters of target compounds (including ionization mode, precursor ion, product ion, cone voltage, collision energy).

↑Compounds marked with a five-pointed star are TPs.

Compound	Recov	ery (%)	LOD ^a	LOQ ^b	
Compound	10 ng	100 ng	LOD		
ACE ↑	90.42±5.5	97.12±11.2	0.24	0.81	
PHE	103.83±2.4	115.79±10.4	0.04	0.12	
ATP	105.35±4.1	102.72±2.0	0.02	0.08	
BZB	95.42±1.8	97.23±5.9	0.01	0.04	
4-CBA ↑	96.60±1.9	98.26±4.5	0.09	0.30	
CA	98.85±3.9	104.06±5.5	0.04	0.13	
CBZ	125.62±4.5	125.43±3.1	0.01	0.05	
CBZE↑	97.78±10.9	97.78±3.4	0.01	0.02	
DCF	101.08±6.8	111.11±2.1	0.02	0.08	
4-OHDCF↑	98.8±3.9	135.36±4.3	0.01	0.01	
IPF	99.86±4.7	99.92±0.6	0.31	1.03	
2-OHIPF ↑	83.62±2.2	97.32±8.9	0.06	0.19	
CIPF↑	91.07±1.9	92.85±13.6	0.33	1.08	
NP	62.43±0.3	62.43±3.6	0.01	0.01	
NPX	91.72±3.9	91.08±7.2	0.08	0.23	
1-NT	65.45±8.0	64.0±9.3	0.03	0.09	
SDZ	81.72±1.9	72.77±5.2	0.01	0.01	
STM ↑	68.6±5.3	92.13±0.9	0.01	0.03	
ST	98.99±3.9	71.83±3.3	0.01	0.01	
SMZ	90.14±4.8	97.44±6.5	0.01	0.01	
NAST↑	103.61±11.6	107.56±7.3	0.02	0.06	

Table S3. Recoveries of all target compounds added to tap water with concentrations of 10 ng L^{-1} , 100 ng L^{-1} respectively. Data are shown as mean \pm standard deviation.

^aLOD refer to limits of detection (ng L⁻¹) that were determined as lowest concentration corresponding to the signal-to-noise (S/N) ratio of 3.

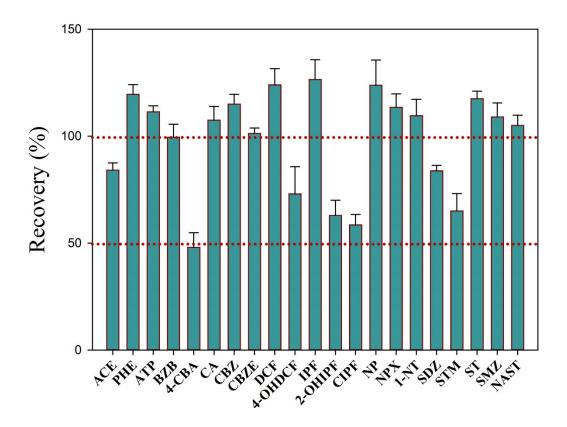
^bLOQ refer to limits of quantification (ng L⁻¹) that were determined as lowest concentration corresponding to the signal-to-noise (S/N) ratio of 10.

↑Compounds marked with a five-pointed star are TPs.

STP		The n	orth city (NC)			The sci	ience park (S	P)			The east city		
River	Ji	inchuan (JC)	Ya	ngtze (YZ)				inhuai (QH)				Yunliang (YL)	
Compound	N_1	N_2	N_3	N_4	N_5	S_1	S_2	S_3	S_4	S_5	E_1	E ₂	E ₃	E_4
ACE ↑	1490±75	107±24	430±11	66.4±33	18.3 ± 0.25	82±4.3	124±14	94±1.0	96±2.8	84±14.8	586±92	187±23	180±42	131±33
PHE	93.3±4.4	78.6±6.4	65±13.9	7.9±2.7	3.5±0.49	6.5±1.0	20.8 ± 1.8	7.8±1.7	7.9 ± 0.32	7.1±0.17	11.5±1.1	244±11	296±26	291±12
ATP	9.5±2.6	8.2±2.0	9.4±2.5	15.4±2.5	17.8 ± 4.0	1.2 ± 0.17	2.9 ± 0.42	1.9 ± 0.57	1.6 ± 0.15	1.3±0.15	2.5 ± 0.71	1.5±0.38	$1.9 \pm .042$	1.7 ± 0.49
BZB	9.2±0.75	9.5±0.47	9.4±1.3	5.0 ± 0.48	4.2 ± 0.41	3.1±1.1	11.9 ± 2.7	5.6±1.6	2.9±0.19	3.0 ± 0.46	1.6 ± 0.25	2.5±0.49	2.47 ± 0.59	2.2 ± 0.62
4-CBA [♠]	13.9±2.8	7.8±0.51	17.9 ± 2.3	21.5±1.3	25.2±1.1	9.9±1.8	12.3 ± 2.4	8.2±1.5	7.35±0.71	11.3±3.5	23.4±5.6	10.7±1.95	13.6±1.5	15±2.8
CA	1.1±0.39	0.68 ± 0.046	1.1±0.05	0.42 ± 0.16	0.36 ± 0.1	ND	ND	ND	ND	ND	0.8±0.26	1.35 ± 0.78	1.13 ± 0.5	1±0.29
CBZ	10.8 ± 1.1	13.9±1.3	13.3 ± 2.68	5.6±0.97	5.0±0.21	1.0 ± 0.25	5.3±0.91	1.5±0.2	1.2 ± 0.05	1.2 ± 0.17	2.6±0.33	5.1±1.1	5.47±0.5	5.17±0.5
CBZE↑	363±30	544±35	448±34	63.2±9.2	55.5±5.4	1.2 ± 0.14	8.4±1.1	3.6±1.4	1.9 ± 0.42	1.5 ± 0.28	5.3±1.2	5.4±0.59	5.36 ± 0.6	5.3±0.53
DCF	183±16	374±27	287±20	38.7±5.4	38.8 ± 5.7	ND	22.3±7.2	ND	ND	ND	19±3.9	22.6±8.6	26.7±2.1	25.1±1.8
4-	4.2 ± 0.88	10.3 ± 1.2	7.3±0.74	1.1±0.49	0.55 ± 0.21	ND	1.4 ± 0.14	0.3±0.11	0.26 ± 0.05	0.11 ± 0.0	0.53 ± 0.4	2.3±0.62	2.2 ± 0.87	1.87±0.59
OHDCF ↑										1				
IPF	162±17	94.0±16	114±21	19.7±6.4	8.5±3.5	15±2.6	17.6±5.9	15.8±4.6	17.1±4.5	18.7±2.1	203±10	94±16	104±7.1	96±10
2-OHIPF ↑	155±5.0	300±21	272±17	49.2±12.3	7.9±3.0	10.1 ± 1.0	88.7±12	44.7±21	13.7±3.7	8.9±0.16	202±11	198±23	140±9.1	167±29
CIPF↑	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SDZ	3.8±0.5	4.9±0.92	2.5±0.32	2.3±0.57	2.7±0.11	3.4±1.7	18.9±3.7	9.5±1.6	3.75±0.81	2.8 ± 0.54	1.1±0.64	0.43 ± 0.32	1.0 ± 0.7	1.07 ± 0.6
STM ↑	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SMZ	320±28	252±41	256±21	46±12	45±9.0	29±6.1	63.7±13	32.5±2.3	29.5±2.3	28.6±9.5	22.9±1.7	12.1±5.2	17.9±4.1	18.4±5.1
NAST↑	356±30	285±34	270±21	48±11	35±10	30.8±8.3	54.8±13.5	40.2±12	35.6±5.04	34.4±5.6	95±8.1	76±12	73.5±3.7	70±3.6
ST	2.8±1.1	1.8±0.334	1.6 ± 0.8	0.51±0.11	0.5±0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND
1-NT	8.4±1.7	ND	ND	ND	ND	1.8 ± 0.4	ND	3.5±1.5	3.4±0.3	2.3±0.5	12.6	7.8	7.5	5
NPX	6.7±0.35	10±1.2	9.9±0.61	ND	ND	ND	7.4±1.6	ND	ND	ND	1.8±0.35	1.75±0.3	2.2 ± 0.8	1.75±0.4
NP	ND	11.9±4.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ND indicate	ND indicates no detectable or below LOQ.													
↑ Compoun		mar	-	wi	th	а		five-po	inted	S	tar	are	2	TPs.

Table S4. Concentrations (ng L^{-1}) of all detected compounds at all sampling sites in rivers. Data are shown as mean \pm standard deviation.

		LogKow	YZ	QH	YL
LogKow	Pearson Correlation	1	0.459	-0.202	-0.130
	Sig. (2-tailed)		0.074	0.509	0.633
	Ν	17	16	13	16
YZ	Pearson Correlation	0.459	1	0.179	0.616*
	Sig. (2-tailed)	0.074		0.578	0.014
	Ν	16	16	12	15
QH	Pearson Correlation	-0.202	0.179	1	0.078
	Sig. (2-tailed)	0.509	0.578		0.801
	Ν	13	12	13	13
YL	Pearson Correlation	-0.130	0.616*	0.078	1
	Sig. (2-tailed)	0.633	0.014	0.801	
	Ν	16	15	13	16


Table S5. Details data of relevant analysis between the physical-chemical properties of compounds and attenuation rates by use of SPSS software.

*Correlation is significant at the 0.05 level (2-tailed).

River	Qinhuai	(QH)	Yunliang	(YL)
Compound	Active	Passive	Active	Passive
ACE ↑	3.4±4.3	7.8±11.6	47.6±24.2	89.1±4.9
PHE	22.8±16.2	25.8±3.2	18.6±3.1	19.5±22.1
BZB	45.5±25.6	N.A.	-82.3±23.4	-65.1±30.9
4-CBA↑	-91.2±28.9	N.A.	-73.4±2.7	30.5±11
CBZE↑	23.2±18.1	14.6±7.3	3.6±14.5	8.1±6.5
4OH-DCF ↑	50.5±4.2	N.A.	19.8±11.9	22.5±7.3
IPF	-55±22.4	-39.3±2.8	-14.2±10.2	-6.2±6.6
2OH-IPF ↑	53.4±13.7	N.A.	23.4±18.7	15.6±21.9
SDZ	59.6±7.5	48.3±12.1	-127±5.9	-82.3±8.5
SMZ	12.2±11.2	11.3±1.6	41.9±17.6	34±14.8
NAST↑	27.9±6.7	23.4±19.5	2.1±9.6	5.1±14.4

Table S6. Attenuation values (%) from 11 pharmaceuticals and their TPs which were detected from samples collected by active and passive sampling. Data are shown as mean \pm standard deviation.

N.A indicates attenuation values cannot be obtained due to no detectable or concentration below LOQ. Compounds marked with a five-pointed star are TPs.

Figure S1. Recoveries of all target compounds spiked to river water with concentrations of 100 ng L⁻¹. Error bars represent the standard deviation.