Electronic Supporting Information(ESI)

for

$Ti(Phen)(OC_2H_5)_2Cl_2$: a highly efficient catalyst for selective oxidation of organic sulfides to sulfoxides by hydrogen peroxide

Rong-Hui Wu, ^{a,b} Jing Wu, ^a Ming-XinYu ^a and Long-Guan Zhu *^a

^a Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China.

^b Key Laboratory of Chemical Utilization of Forestry Biomass of Zhejiang Province, Zhejiang A & F University, Lin'an, Zhejiang Province, 311300, China.

^{*} To whom correspondene should be addressed

E-mail:chezlg@zju.edu.cn(L. G. Zhu).

Table S1 Ti(Phen)(OC₂H₅)₂Cl₂ catalyzed oxidation of organic sulfides with H_2O_2 in CH₃OH or CH₃CH₂OH solvent ^{*a*}

Entry	Substrate	Time	CH ₃ OH	CH ₃ CH ₂ OH
Linuy	Substitute	(min)	Conv. (%)/Sele. (%) ^{b, c}	Conv. (%)/Sele. (%) ^{b, c}
1	s s	20	100 / 96	100 / 95
2	С С С С С С С С С С С С С С С С С С С	50	96 / 99	100 / 94
3	S C	65	99/ 97	99 / 92
4		45	98 / 96	100 / 90
5		360	98 / 92	99/ 82

^a Reaction conditions: 1.00 mmol of sulfides, 1.00 mmol of 30% H₂O₂, 2.5*10⁻³mmol Ti catalyst, in CH₃OH or CH₃CH₂OH solution (5 mL) at 25°C. Products were quantified by GC analysis and characterized by GC-MS.

^b The GC yields (%) are measured relative to the starting sulfide.

^{*c*} Selectivity to sulfoxides, the byproduct was sulfone.

	1	
Empirical formula	$C_{16}H_{18}N_2O_2TiCl_2$	
Mr	389.12	
Crystal system	Triclinic	
Space group	P -1	
Size(mm ³)	0.42×0.32×0.26	
habit/color	Block/Colorless	
a(Å)	9.0551(7)	
b(Å)	9.1409(7)	
c(Å)	11.4606(8)	
$\alpha(^{\circ})$	105.286(7)	
β(°)	90.508(6)	
γ(°)	104.462(7)	
V(Å ³)	883.22(27)	
Z	2	
Dc(Mg·m-3)	1.463	
$\mu(mm^{-1})$	0.796	
θ range	3.2-25.1	
Unique reflections	3127	
Observed reflections	1924	
parameters	210	
F(000)	399.9	
T(K)	293(2)	
$R_1 wR_2[I \ge 2\sigma(I]]$	0.059, 0.139	
$R_1 wR_2$ [alldata]	0.102, 0.174	
GOF	1.048	
Largest peak and hole(e· Å-3)	0.370, -0.260	

 Table S2 Crystallographic data and refinement parameters for complex 1

Lengths			
Til-Ol	1.788(4)	Ti1-O2	1.761(3)
Ti1-N1	2.249(4)	Ti1-N2	2.251(4)
Ti1-Cl1	2.4009(13)	Ti1-Cl2	2.3519(13)
Angles			
01-Ti1-O2	105.06(18)	O1-Ti1-N2	162.80(16)
O2-Ti1-N2	91.43(16)	O1-Ti1-N1	90.74(16)
O2-Ti1-N1	163.23(15)	N2-Ti1-N1	72.40(14)
O1-Ti1-Cl1	92.92(11)	O2-Ti1-Cl1	90.58(11)
N2-Ti1-Cl1	81.91(9)	N1-Ti1-Cl1	82.92(9)
O1-Ti1-Cl2	97.20(11)	O2-Ti1-Cl2	97.86(11)
N2-Ti1-Cl2	85.07(10)	N1-Ti1-Cl2	85.42(10)
Cl1-Ti1-Cl2	164.65(6)		

Table S3 Selected bond lengths (Å) and angles (°) for complex 1

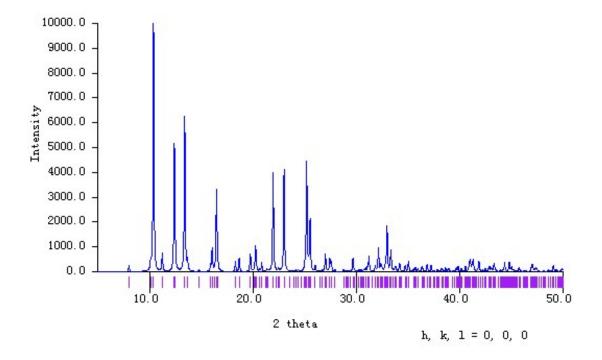


Figure S1. The calculated XRD pattern from single crystal data of complex 1.

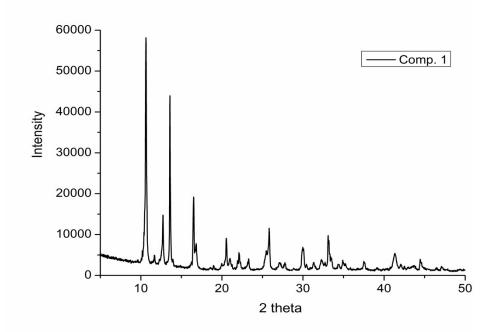


Figure S2. The powder XRD pattern for complex 1.

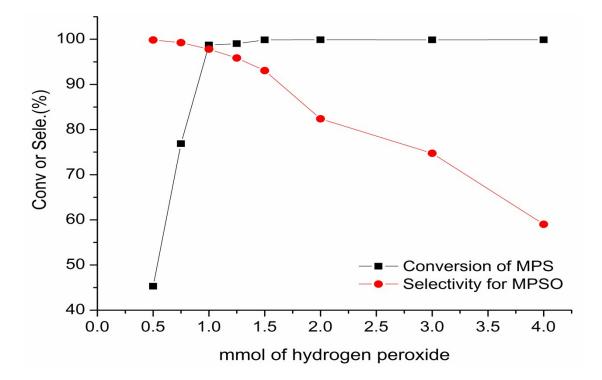


Figure S3. A hydrogen peroxide amount dependent profile of the oxidation of MPS by complex 1, the reactions were run for 20 min at 25 °C.

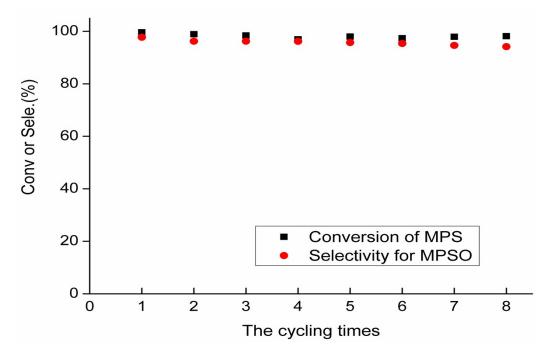


Figure S4. Catalytic activity of eight repetition cycles for complex 1

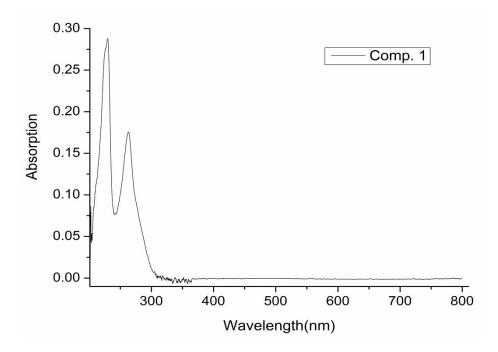


Figure S5. The UV-vis spectra of complex 1 in CH₃OH

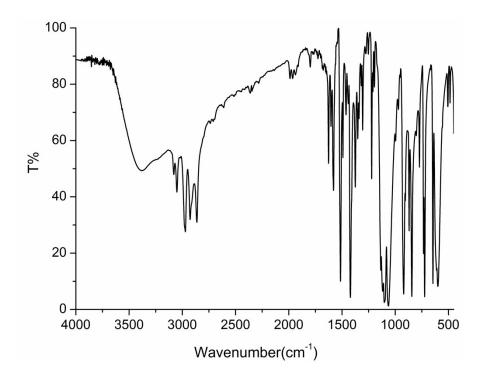


Figure S6. The IR spectrum of of complex 1.

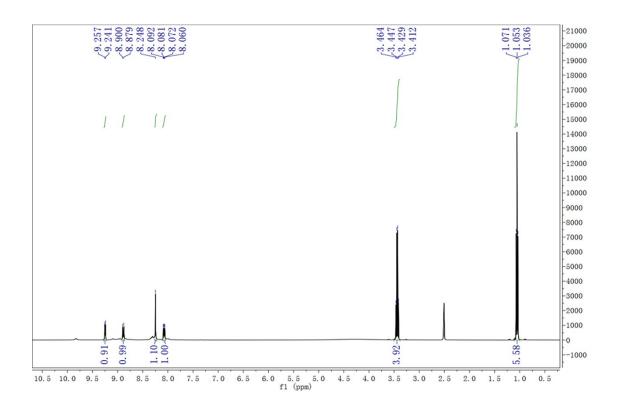


Figure S7. The ¹H NMR spectra of complex 1

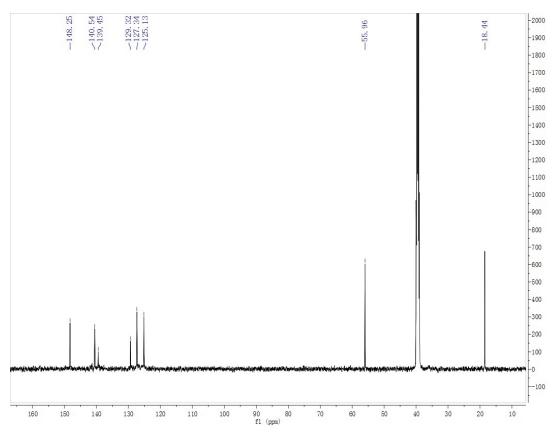


Figure S8. The ¹C NMR spectra of complex 1