Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplemental Information

The catalytic performances and reaction mechanism of nanoparticle Cd/Ce-Ti oxide catalysts for NH₃-SCR reaction

Zhichen Duan¹, Kebin Chi², Jian Liu^{1,*}, Juan Shi¹, Zhen Zhao¹, Yuechang We¹i, Weiyu Song¹

1. State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control,

China University of Petroleum, Beijing 102249, China

2. Petrochemical Research Institute, Petro China Company Limited, Beijing 100195, China

* Corresponding author: Email address: liujian@cup.edu.cn

Postal Address: 18# Fuxue Road, Chang Ping District, Beijing, 102249, China,

Tel: 86-10-89732278, Fax: 86-10-69724721

Fourier transform infrared (FT-IR) absorbance spectra were recorded in the wave numbers ranging from 4000 to 400 cm⁻¹ via a FTS-3000 spectrophotometer. The measured wafer was prepared with the weight ratio of sample to KBr, 1/100. The resolution was set at 2 cm⁻¹ during measurements.

Fig.1 FT-IR spectra of Cd_M/Ce_{0.3}TiO_x catalysts

FT-IR spectra of $Cd_M/Ce_{0.3}TiO_x$ samples are shown in Fig. 1. The spectra of all samples exhibit similar structure characteristics. There is obvious bands attributing to anatase TiO_2 (500-540 cm⁻¹). It may be assumed that the loading of the Cd rarely affect on the anatase TiO_2 structure of the supporter. The band at 450 cm⁻¹ expresses the vibration of TO_4 units, and that at 540 cm⁻¹ is attributed to the vibration of Ti-O bands while the band at 1386 cm⁻¹ attributes to the vibration of Ce-O bands. There are no obvious bands attributing to the vibration of Cd. It may be due to the low metal loadings and the band of the vibration of those loading metals overlapping with that of anatase TiO_2 .

 Ce_yTiO_x (y=0.02, 0.1, 0.2, 0.3, 0.5) have being prepared in pervious study and the $Ce_{0.3}TiO_x$ catalyst shows the best catalytic performance

Fig. 2 NO conversion as a function of reaction temperature over Ce_vTiO_x catalysts