Supporting Information

Synthesis and Functionalization of 3-Bromo-2-(2-chlorovinyl)benzothiophenes as Molecular Tools

Guangkuan Zhao, Mouad Alami* and Olivier Provot*

BioCIS, Equipe Labellisée Ligue Contre le Cancer, Univ Paris-Sud, CNRS, University Paris Saclay, 92290, Châtenay-Malabry, France Fax: (+33) 146-83-58-87, E-mail: <u>olivier.provot or mouad.alami@u-psud.fr</u>

Table of contents

General experimental methods	2
Synthesis procedure and corresponding characterization data of new compounds	2-17
References for reported compounds	17
NMR spectra	18-59

General experimental methods

General Information and Method. All glasswares were oven-dried at 140 °C and all reactions were conducted under an argon atmosphere. Solvents: cyclohexane, ethyl acetate (EtOAc), for chromatography, were technical grade. All new compounds were characterized by ¹H NMR, ¹³C NMR, IR spectroscopy, HRMS and elemental analyses. ¹H and ¹³C NMR spectra were measured in CDCl₃ with a Bruker Avance 300. ¹H NMR chemical shifts are reported in ppm from an internal standard TMS or of residual chloroform (7.26 ppm). The following abreviation are used: m (multiplet), s (singlet), d (doublet), t (triplet), dd (doublet of doublet), td (triplet of doublet), ddd (doublet of doublet). ¹³C chemical shifts are reported in ppm from the central peak of deuteriochloroform (77.14). IR spectra were measured on a Bruker Vector 22 spectrophotometer (neat, cm⁻¹). High-resolution mass spectra were recorded on a Bruker Daltonics micrOTOF-Q instrument. Elemental analyses (C, H) were performed with a Perkin-Elmer 240 analyzer at the microanalyses Service of the Faculty of Pharmacy at Châtenay-Malabry (France) and were within 0.4% of the theorical values otherwise stated. Analytical TLC was performed on Merck precoated silica gel 60 F-254 plates. Merck silica gel 60 (230-400 mesh) was used for column chromatography. The plates were visualized by either UV light (254 nm), or by a solution of phosphomolybdic acid in ethanol.

General Procedure for the Synthesis of (E)-Chloroenynes 5a, 5b and 18

To a solution of alkyne (10 mmol) in Et_2O (150 mL) was added successively (E)-1,2-dichloroethylene (8 mL, 100 mmol), $PdCl_2(PPh_3)_2$ (700 mg, 1 mmol), piperidine (2 mL, 20 mmol) and CuI in portions (190 mg, 1 mmol). After complete disappearance of starting material monitored by TLC, the solution was filtered through a pad of celite using EtOAc. The organic layer was washed successively with sat. NH₄Cl, sat. NaHCO₃ and HCl (1 M) solutions. After drying over MgSO₄ and evaporation in vacuo, the crude residue was purified by silica gel column chromatography.

(E)-(2-(4-Chlorobut-3-en-1-yn-1-l)phenyl)(methyl) sulfane (5a)

brown oil, yield 68%, 1.4 g.

¹H NMR (300 MHz, CDCl₃) δ = 7.38 (d, *J* = 7.8 Hz, 1H), 7.30 (t, *J* = 7.8 Hz, 1H), 7.15 (d, *J* = 7.8 Hz, 1H), 7.08 (t, *J* = 7.8 Hz, 1H), 6.68 (d, *J* = 13.5 Hz, 1H), 6.22 (d, *J* = 13.5 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 141.6 (Cq), 132.3 (CH), 130.4 (CH), 129.1 (CH), 124.3

(CH), 124.2 (CH), 120.7 (Cq), 113.8 (CH), 90.7 (Cq), 89.3 (Cq), 15.1 (CH₃). IR (neat): 3069, 2920, 2197, 1687, 1573, 1461, 1431, 1246, 1226, 1165, 1080, 1040, 908, 839, 786, 746, 717, 669 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for $C_{11}H_{10}^{35}ClS$: 209.0186; found: 209.0195.

(E)-3-(4-Chlorobut-3-en-1-yn-1-yl)-2-(methylthio) pyridine (5b)

brown oil, yield 74%, 1.6 g.

¹H NMR (300 MHz, CDCl₃) $\delta = 8.38$ (d, J = 4.8 Hz, 1H), 7.54 (d, J = 7.5 Hz, 1H), 6.94 (dd, J = 7.5 Hz, J = 4.8 Hz, 1H), 6.71 (d, J = 13.8 Hz, 1H), 6.21 (d, J = 13.8 Hz, 1H), 2.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 161.8$ (Cq), 148.4 (CH), 138.6 (CH), 131.5 (CH), 118.3 (CH), 117.2 (Cq), 113.5 (CH), 93.1 (Cq), 87.1 (Cq), 13.2 (CH₃). IR (neat): 2926, 2853, 1756, 1587, 1565, 1547, 1385, 1244, 1227, 1137, 1096, 1061, 1029, 915, 848, 794, 774, 741, 664 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₁₀H₉³⁵ClNS: 210.0139; found: 210.0137.

(E)-(2-(4-chlorobut-3-en-1-yn-1-yl)phenyl)(methyl) selane (18)

brown oil, yield 76%, 1.9 g.

¹H NMR (300 MHz, CDCl₃) δ = 7.27 (d, *J* = 7.5 Hz, 1H), 7.19 - 7.13 (m, 2H), 7.06 - 6.99 (m, 1H), 6.58 (d, *J* = 13.5 Hz, 1H), 6.11 (d, *J* = 13.5 Hz, 1H), 2.23 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 136.4 (Cq), 132.3 (CH), 130.6 (CH), 129.2 (CH), 127.6 (CH), 125.3 (CH), 123.1 (Cq), 113.7 (CH), 90.3 (Cq), 89.9 (Cq), 6.2 (CH₃). IR (neat): 3069, 2928, 1732, 1588, 1509, 1458, 1424, 1277, 1243, 1223, 1161, 1063, 1030, 913, 844, 791, 749, 714, 656 cm⁻¹. HRMS (APCI): *m/z* [M+H]⁺ calcd for C₁₁H₁₀³⁷ClSe: 256.9628; found: 256.9635.

Procedure for the Synthesis of (Z)-5a

To a solution of alkyne (10 mmol) in Et_2O (150 mL) was added successively (Z)-1,2-dichloroethylene (8 mL, 100 mmol), $PdCl_2(PPh_3)_2$ (700 mg, 1 mmol), *n*-BuNH₂ (2 mL, 20 mmol) and CuI in portions (190 mg, 1 mmol). After complete disappearance of starting material monitored by TLC, the solution was filtered through a pad of celite using EtOAc. The organic layer was washed successively with sat. NH₄Cl, sat. NaHCO₃ and HCl (1 M) solutions. After drying over MgSO₄ and evaporation in vacuo, the crude residue was purified by silica gel column chromatography.

(Z)-(2-(4-Chlorobut-3-en-1-yn-1-yl)phenyl)(methyl) sulfane (5a)

brown oil, yield 56%, 1.2 g.

¹H NMR (300 MHz, CDCl₃) δ = 7.46 (d, J = 7.8 Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.18 (d,

Hz, 1H), 7.10 (t, J = 7.8 Hz, 1H), 6.47 (d, J = 7.5 Hz, 1H), 6.16 (d, J = 7.5 Hz, 1H), 2.50 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 141.8$ (Cq), 132.7 (CH), 129.2 (CH), 128.6 (CH), 124.3 (2 CH), 120.9 (Cq), 112.0 (CH), 94.7 (Cq), 89.6 (Cq), 15.2 (CH₃). IR (neat): 3083, 2920, 2197, 1618, 1590, 1575, 1462, 1434, 1333, 1279, 1242, 1074, 1039, 966, 808, 750, 720, 671, 634 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₁₁H₁₀³⁵ClS: 209.0186; found: 209.0192.

Procedure for the Synthesis of Dichloroenyne 5c

Triethylamine (40 mL) was added to a stirred mixture of alkyne (3.0 g, 20.2mmol), 2-bromo-1,1-dichloroethylene (5.7 g, 32.3 mmol), $PdCl_2(PPh_3)_2$ (60 mg, 0.085mmol), CuI (27 mg, 0.14mmol) and PPh₃ (53 mg, 0.2 mmol) under argon atmosphere. The mixture was heated under reflux for 4 h. The precipitated ammonium salt was filtered off, the solvent was evaporated and water (75 mL) was added to the residue. The mixture was extracted with Et₂O (3 x 50 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography.

(2-(4,4-Dichlorobut-3-en-1-yn-1-yl)phenyl)(methyl) sulfane (5c)

yellow oil, yield 71%, 3.5 g.

¹H NMR (300 MHz, CDCl₃) δ = 7.43 (d, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.25 (s, 1H), 2.49 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 142.0 (Cq), 132.7 (CH), 131.9 (Cq), 129.5 (CH), 124.4 (CH), 124.3 (CH), 120.5 (Cq), 111.0 (CH), 95.1 (Cq), 89.5 (Cq), 15.2 (CH₃). IR (neat): 3029, 2920, 2198, 1591, 1573, 1462, 1434, 1291, 1264, 1243, 1164, 1131, 1079, 1041, 1016, 955, 922, 819, 748, 719, 672, 655 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₁₁H₉³⁵Cl₂S: 242.9797; found: 242.9802.

General Procedure for the Synthesis of (E)-6a, (Z)-6a, (E)-9, (E)-6b, 6c and (E)-19

To a solution of chloroenyne substrate in CH_2Cl_2 (1 mmol) was added MPHT (1.2 equiv), and the resulting solution was stirred at room temperature until disappearance of the starting material (as judged by TLC). The reaction mixture was next treated with a saturated $Na_2S_2O_3$ solution. The organic layer was washed with 10 % HCl solution (3 x 10 ml) and dried with MgSO₄. Removal of the solvent yield a crude product, which was purified by silica gel chromatography.

(E)-3-Bromo-2-(2-chlorovinyl)benzo[b]thiophene 6a¹

yellow solid, mp 97.8 - 98.3 °C, yield 88%, 240.1 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.81 - 7.73 (m, 2H), 7.48 - 7.39 (m, 2H), 7.26 (d, *J* = 13.5 Hz,

1H), 6.76 (d, J = 13.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 138.2$ (Cq), 136.4 (Cq), 133.0 (Cq), 126.4 (CH), 126.0 (CH), 125.4 (CH), 123.4 (CH), 122.3 (2 CH), 108.7 (Cq). IR (neat): 3055, 1704, 1601, 1504, 1454, 1432, 1320, 1302, 1254, 1229, 1199, 1157, 1015, 920, 866, 786, 760, 746, 719 cm⁻¹. Anal. Calcd. for C₁₀H₆BrClS: C 43.90%, H 2.21%. Found C 43.58%, H 2.31%.

(Z)-3-Bromo-2-(2-chlorovinyl)benzo[b]thiophene 6a

yellow solid, mp 70.9 -71.8 °C, yield 85%, 232.5 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.87 - 7.80 (m, 2H), 7.48 - 7.40 (m, 2H), 7.26 (d, *J* = 7.8 Hz, 1H), 6.44 (d, *J* = 7.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 138.5 (Cq), 136.8 (Cq), 131.9 (Cq), 126.3 (CH), 125.3 (CH), 123.4 (CH), 122.7 (CH), 122.3 (CH), 119.8 (CH), 111.2 (Cq). IR (neat): 3076, 3055, 3024, 2924, 2851, 1940, 1908, 1819, 1787, 1733, 1641, 1607, 1556, 1483, 1453, 1431, 1338, 1307, 1260, 1242, 1147, 1018, 922, 867, 807, 767, 749, 721, 638 cm⁻¹. Anal. Calcd. for C₁₀H₆BrClS: C 43.90%, H 2.21%. Found C 43.63%, H 2.16%.

(E)-1-(4-(2-(3-Bromobenzo[b]thiophen-2-yl)vinyl) phenyl)ethanone (9)

yellow solid, mp 163.0 - 163.4 °C, yield 73%, 260.8 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.95 (d, *J* = 8.1 Hz, 2H), 7.80 - 7.73 (m, 2H), 7.63 - 7.55 (m, 3H), 7.45 - 7.35 (m, 2H), 7.07 (d, *J* = 15.9 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 197.4 (Cq), 141.0 (Cq), 138.8 (Cq), 136.8 (Cq), 136.7 (Cq), 136.6 (Cq), 131.2 (CH), 129.0 (2 CH), 126.9 (2 CH), 126.5 (CH), 125.5 (CH), 123.4 (CH), 123.2 (CH), 122.4 (CH), 110.0 (Cq), 26.7 (CH₃). IR (neat): 1679, 1598, 1560, 1433, 1407, 1356, 1300, 1272, 1255, 1020, 961, 938, 923, 856, 812, 778, 753 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₄OS⁷⁹Br: 356.9949; found: 356.9955.

3-Bromo-2-(2,2-dichlorovinyl)benzo[b]thiophene (6c)

white solid, mp 113.1 - 113.5 °C, yield 80%, 246.4 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.85 - 7.78 (m, 2H), 7.49 - 7.41 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 138.1 (Cq), 137.0 (Cq), 131.1 (Cq), 126.7 (CH), 125.6 (CH), 123.6 (CH), 123.2 (Cq), 122.6 (CH), 122.4 (CH), 111.4 (Cq). IR (neat): 3030, 1747, 1621, 1481, 1452, 1426, 1368, 1325, 1306, 1252, 1220, 1210, 1184, 1086, 1059, 1047, 1034, 1016, 928, 913, 846, 810, 751, 734, 721, 680, 644 cm⁻¹. Anal. Calcd. for C₁₀H₅BrCl₂S: C 38.99%, H 1.64%. Found C 39.20%, H 1.64%.

(E)-3-Bromo-2-(2-chlorovinyl)thieno[2,3-b]pyridine (6b)

light yellow solid, mp 131.9 - 132.4 °C, yield 65%, 178.5 mg.

¹H NMR (300 MHz, CDCl₃) $\delta = 8.56$ (d, J = 4.5 Hz, 1H), 7.99 (d, J = 8.1 Hz, 1H), 7.36 (dd, J = 8.1 Hz, J = 4.5 Hz, 1H), 7.21 (d, J = 13.5 Hz, 1H), 6.81 (d, J = 13.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 158.3$ (Cq), 148.4 (CH), 133.8 (Cq), 132.6 (Cq), 130.8 (CH), 125.9 (CH), 124.0 (CH), 120.8 (CH), 106.0 (Cq). IR (neat): 3048, 2957, 2923, 1733, 1723, 1603, 1552, 1376, 1317, 1277, 1232, 1196, 966, 885, 791, 765, 672 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₉H₆⁷⁹Br³⁵ClNS: 273.9087; found: 273.9086.

(E)-3-Bromo-2-(2-chlorovinyl)benzo[b]selenophene 19

white solid, mp 87.7 - 87.9 °C, yield 93%, 298.1 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.84 (d, *J* = 7.8 Hz, 1H), 7.76 (d, *J* = 7.8 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.38 - 7.27 (m, 2H), 6.62 (d, *J* = 13.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl3) δ = 140.2 (Cq), 136.8 (Cq), 134.6 (Cq), 128.5 (CH), 126.8 (CH), 125.9 (CH), 125.8 (CH), 125.4 (CH), 123.2 (CH), 110.8 (Cq). IR (neat): 3044, 1941, 1787, 1724, 1702, 1601, 1508, 1460, 1431, 1310, 1291, 1248, 1226, 1158, 1028, 938, 914, 865, 844, 788, 749, 712 cm⁻¹. Anal. Calcd. for C₁₀H₆BrClSe: C 37.48%, H 1.89%. Found C 37.41%, H 1.91%.

General Procedure for the Synthesis of (E)-8a-g, (Z)-8a, (Z)-8b, 15

To a mixture of 3-bromobenzo[b]thiophene (1 mmol) in toluene (12 mL) and MeOH (6 mL) was successively added the desired boronic acid (1.3 mmol), K_2CO_3 (276.4 mg, 2 mmol), and [PdCl(dmba)(IMes)] (70.2 mg, 0.1 mmol). The reaction mixture was heated at 90 °C under vigorous stirring and monitored by TLC until complete disappearance of starting material. The solvent was evaporated in vacuo and water (10 mL) was added. After extraction with EtOAc (3 x 10 mL), the combined organic layers were dried with MgSO₄ and the solvent was removed under reduced pressure. The crude material was purified by column chromatography to afford the expected product.

(E)-1-(4-(2-(2-Chlorovinyl)benzo[b]thiophen-3-yl) phenyl)ethanone (8a)

yellow solid, mp 148.7 - 149.3 °C, yield 90%, 281.6 mg.

¹H NMR (300 MHz, CDCl₃) δ = 8.11 (d, *J* = 7.8 Hz, 2H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.53 - 7.48 (m, 3H), 7.40 - 7.28 (m, 2H), 6.90 (d, *J* = 13.5 Hz, 1H), 6.67 (d, *J* = 13.5 Hz, 1H), 2.68 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 197.7 (Cq), 139.3 (Cq), 139.1 (Cq), 137.9 (Cq), 136.5 (Cq), 134.9 (2 Cq), 130.6 (2 CH), 128.8 (2 CH), 126.1 (CH), 125.8 (CH), 125.0 (CH), 123.1 (CH), 122.4 (CH),

121.3 (CH), 26.8 (CH₃). IR (neat): 3057, 1820, 1734, 1680, 1604, 1564, 1551, 1522, 1492, 1457, 1431, 1403, 1356, 1305, 1285, 1264, 1235, 1209, 1182, 1159, 1131, 1112, 1071, 1018, 958, 924, 906, 877, 837, 790, 763, 732, 679, 657, 645, 626 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for $C_{18}H_{14}OS^{35}Cl$: 313.0454; found: 313.0458.

(E)-2-(2-Chlorovinyl)-3-(4-methoxyphenyl)benzo [b]thiophene (8b)

Yellow solid, mp 93.3 - 93.6 °C, yield 74%, 222.6 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.79 (d, *J* = 7.8 Hz, 1H), 7.56 (d, *J* = 7.8 Hz, 1H), 7.39 - 7.28 (m, 4H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.97 (d, *J* = 13.5 Hz, 1H), 6.64 (d, *J* = 13.5 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.5 (Cq), 140.1 (Cq), 137.9 (Cq), 136.1 (Cq), 133.7 (Cq), 131.5 (2 CH), 126.8 (CH), 126.4 (Cq), 125.6 (CH), 124.7 (CH), 123.5 (CH), 122.3 (CH), 120.1 (CH), 114.3 (2 CH), 55.5 (CH₃). IR (neat): 3057, 3000, 2957, 2930, 2906, 2835, 1685, 1610, 1573, 1525, 1494, 1460, 1439, 1413, 1356, 1319, 1305, 1287, 1247, 1210, 1176, 1156, 1130, 1109, 1068, 1034, 1017, 924, 874, 834, 805, 788, 762, 733, 682, 659, 624 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₁₇H₁₄³⁵ClOS: 301.0448; found: 301.0451.

(E)-2-(2-Chlorovinyl)-3-(4-methoxyphenyl)benzo [b]thiophene (8c)

yellow solid, mp 105.9 - 106.5 °C, yield 88%, 277.0 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.78 (d, *J* = 7.2 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.39 - 7.29 (m, 2H), 7.02 - 6.84 (m, 4H), 6.65 (d, *J* = 13.5 Hz, 1H), 6.07 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 148.0 (Cq), 147.6 (Cq), 140.0 (Cq), 137.8 (Cq), 135.8 (Cq), 134.0 (Cq), 127.8 (Cq), 126.7 (CH), 125.6 (CH), 124.8 (CH), 124.1 (CH), 123.5 (CH), 122.3 (CH), 120.3 (CH), 110.6 (CH), 108.7 (CH), 101.4 (CH₂). IR (neat): 1518, 1501, 1479, 1440, 1425, 1367, 1314, 1272, 1239, 1205, 1117, 1094, 1039, 935, 898, 853, 813, 773, 761, 733 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₁₇H₁₂³⁵ClO₂S: 315.0241; found: 315.0240.

(E)-4-(2-(2-Chlorovinyl)benzo[b]thiophen-3-yl)phenol (8d)

yellow solid, mp 153.0 - 153.7 °C, yield 59%, 169.2 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.81 (d, *J* = 7.5 Hz, 1H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.41 - 7.28 (m, 4H), 7.09 - 6.95 (m, 3H), 6.65 (d, *J* = 13.5 Hz, 1H), 5.33 (br, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 155.5 (Cq), 140.1 (Cq), 137.9 (Cq), 136.0 (Cq), 133.8 (Cq), 131.7 (2 CH), 126.8 (CH), 126.7 (Cq), 125.6 (CH), 124.8 (CH), 123.5 (CH), 122.3 (CH), 120.1 (CH), 115.8 (2 CH). IR (neat): 3058, 1611, 1594, 1525, 1495, 1431, 1350, 1236, 1205, 1172, 1104, 1039, 1018, 908, 874, 837,

817, 761, 732 cm⁻¹. HRMS (ESI): m/z [M-H]⁻ calcd for $C_{16}H_{10}OS^{35}Cl$: 285.0141; found: 285.0130.

(E)-3-(3-Chlorophenyl)-2-(2-chlorovinyl)benzo[b] thiophene (8e)

yellow oil, yield 84%, 256.4 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.82 (d, *J* = 7.8 Hz, 1H), 7.57 - 7.28 (m, 7H), 6.94 (d, *J* = 13.5 Hz, 1H), 6.70 (d, *J* = 13.5 Hz, 1H), 1.47 (cyclohexane). ¹³C NMR (75 MHz, CDCl₃) δ = 139.6 (Cq), 137.9 (Cq), 136.0 (Cq), 134.8 (2 Cq), 134.6 (Cq), 130.2 (CH), 130.1 (CH), 128.6 (CH), 128.3 (CH), 126.2 (CH), 125.8 (CH), 125.0 (CH), 123.2 (CH), 122.3 (CH), 121.1 (CH), 27.0 (cyclohexane). IR (neat): 3058, 1595, 1564, 1517, 1470, 1455, 1432, 1403, 1353, 1317, 1288, 1271, 1234, 1208, 1159, 1132, 1094, 1078, 1019, 998, 953, 925, 894, 875, 846, 809, 785, 846, 809, 785, 760, 731, 713, 693, 650 cm⁻¹. Anal. Calcd. for C₁₆H₁₀Cl₂S: C 62.96%, H 3.30%. Found C 62.52%, H 3.37%.

(E)-2-(2-Chlorovinyl)-3-(4-vinylphenyl)benzo[b] thiophene (8f)

yellow solid, mp 74.8 - 75.6 °C, yield 75%, 222.6 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.80 (d, *J* = 7.5 Hz, 1H), 7.60 - 7.56 (m, 3H), 7.40 - 7.29 (m, 4H), 6.98 (d, *J* = 13.5 Hz, 1H), 6.83 (dd, *J* = 17.7 Hz, *J* = 10.8 Hz, 1H), 6.66 (d, *J* = 13.5 Hz, 1H), 5.87 (d, *J* = 17.7 Hz, 1H), 5.36 (d, *J* = 10.8 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 139.8 (Cq), 138.0 (Cq), 137.3 (Cq), 136.4 (CH), 135.9 (Cq), 134.1 (Cq), 133.7 (Cq), 130.5 (2 CH), 126.6 (3 CH), 125.7 (CH), 124.8 (CH), 123.5 (CH), 122.3 (CH), 120.5 (CH), 114.7 (CH₂). IR (neat): 3057, 1710, 1685, 1629, 1606, 1524, 1493, 1456, 1432, 1402, 1354, 1317, 1288, 1271, 1249, 1234, 1209, 1180, 1158, 1131, 1113, 1068, 1034, 1017, 989, 925, 907, 876, 844, 802, 787, 762, 731 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₁₈H₁₄³⁵CIS: 297.0499; found: 297.0510.

(E)-1-(4-(2-(2-Chlorovinyl)thieno[2,3-b]pyridin-3-yl)phenyl)ethanone (8g)

white solid, mp 166.9 - 167.1 °C, yield 85 %, 267.5 mg.

¹H NMR (300 MHz, CDCl₃) δ = 8.55 (d, *J* = 3.9 Hz, 1H), 8.12 (d, *J* = 7.8 Hz, 2H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.49 (d, *J* = 7.8 Hz, 2H), 7.30 - 7.23 (m, 1H), 6.93 (d, J = 13.5 Hz, 1H), 6.75 (d, *J* = 13.5 Hz, 1H), 2.68 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 197.5 (Cq), 160.1 (Cq), 147.8 (CH), 138.2 (Cq), 136.9 (Cq), 135.0 (Cq), 133.2 (Cq), 132.3 (Cq), 130.4 (2 CH), 130.3 (CH), 129.0 (2 CH), 125.9 (CH), 123.0 (CH), 120.3 (CH), 26.8 (CH₃). IR (neat): 3056, 1682, 1605, 1552, 1518, 1486, 1424, 1404, 1384, 1357, 1264, 1234, 1211, 1183, 1017, 959, 928, 878, 839, 795, 753, 728 cm⁻¹.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₇H₁₃NOS³⁵Cl: 314.0406; found: 314.0400.

(Z)-1-(4-(2-(2-Chlorovinyl)benzo[b]thiophen-3-yl)phenyl)ethanone (8a)

yellow solid, mp 179.1 - 179.8 °C, yield 86%, 240.9 mg.

¹H NMR (300 MHz, CDCl3) $\delta = 8.10$ (d, J = 8.1 Hz, 2H), 7.89 (d, J = 8.1 Hz, 1H), 7.56 - 7.50 (m, 3H), 7.44 - 7.31 (m, 2H), 6.84 (d, J = 8.1 Hz, 1H), 6.26 (d, J = 8.1 Hz, 1H), 2.68 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 197.7$ (Cq), 140.0 (Cq), 139.9 (Cq), 137.9 (Cq), 137.4 (Cq), 136.6 (Cq), 133.8 (Cq), 130.8 (2 CH), 128.7 (2 CH), 125.7 (CH), 124.8 (CH), 123.1 (CH), 122.7 (CH), 122.3 (CH), 118.6 (CH), 26.8 (CH₃). IR (neat): 1680, 1603, 1426, 1403, 1356, 1332, 1265, 1181, 1160, 1130, 1072, 1017, 958, 931, 908, 859, 823, 766, 729, 660, 643 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₄OS³⁵Cl: 313.0454; found: 313.0448.

(Z)-2-(2-Chlorovinyl)-3-(4-methoxyphenyl)benzo[b] thiophene (8b)

yellow solid, mp 116.5 - 117.2 °C, yield 85%, 255.7 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.88 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.41 - 7.31 (m, 4H), 7.05 (d, J = 8.4 Hz, 2H), 6.90 (d, J = 7.8 Hz, 1H), 6.22 (d, J = 7.8 Hz, 1H), 3.90 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.5 (Cq), 139.9 (Cq), 138.7 (Cq), 138.6 (Cq), 132.8 (Cq), 131.7 (2 CH), 127.1 (Cq), 125.5 (CH), 124.5 (CH), 123.5 (CH), 123.3 (CH), 122.2 (CH), 117.4 (CH), 114.2 (2 CH), 55.4 (CH₃). IR (neat): 1743, 1685, 1609, 1521, 1484, 1459, 1362, 1331, 1287, 1245, 1175, 1129, 1108, 1033, 851, 825, 788, 765, 730, 663, 643, 622 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₁₇H₁₄³⁵ClOS: 301.0448; found: 301.0449.

2-(2,2-Dichlorovinyl)-3-(4-methoxyphenyl)benzo[b] thiophene 15

yellow solid, mp 116.6 - 117.0 °C, yield 83%, 278.3 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.86 (d, *J* = 7.8 Hz, 1H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.42 - 7.30 (m, 4H), 7.08 - 7.02 (m, 3H), 3.91 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.6 (Cq), 139.6 (Cq), 138.8 (Cq), 138.7 (Cq), 131.7 (2 CH), 126.7 (Cq), 125.7 (CH), 124.7 (CH), 123.6 (CH), 123.1 (CH), 122.2 (CH), 120.6 (Cq), 114.4 (2 CH), 55.5 (CH₃), one C not seen. IR (neat): 2835, 1609, 1522, 1484, 1461, 1440, 1359, 1287, 1248, 1212, 1179, 1162, 1108, 1035, 912, 839, 813, 764, 735, 664, 645 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₁₇H₁₃OS³⁵Cl₂: 335.0059; found: 335.0057.

General Procedure for the Synthesis of (E)-1ab-ak, (E)-11, (Z)-1al, (Z)-1am

To a mixture of chloroenyne substrate (0.5 mmol) in toluene (6 mL) and MeOH (3 mL) was

successively added the desired boronic acid (0.6 mmol), K_2CO_3 (138.2 mg, 1 mmol) and $Pd(PPh_3)_4$ (28.9 mg, 0.025 mmol). The reaction mixture was heated at 90 °C, under vigorous stirring and monitored by TLC until complete disappearance of starting material. The solvent was evaporated in vacuo and water (10 mL) was added. After extraction with CH_2Cl_2 (3 x 10 mL), the combined organic layer were dried over MgSO₄, and the solvent was removed under reduced pressure. The crude material was purified by column chromatography on silica gel.

(E)-1-(4-(2-(3-(4-acetylphenyl)benzo[b]thiophen-2-yl)vinyl)phenyl)ethan-1-one (1aa)

yellow solid, mp 199.5 – 199.7 °C.

¹H NMR (300 MHz, DMSO) δ = 8.18 (d, *J* = 8.1 Hz, 2H), 8.05 (d, *J* = 8.1 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 2H), 7.68 – 7.63 (m, 4H), 7.55 – 7.33 (m, 4H), 7.24 (d, *J* = 15.9 Hz, 1H), 2.69 (s, 3H), 2.56 (s, 3H). ¹³C NMR (75 MHz, DMSO) δ = 198.0 (Cq), 197.6 (Cq), 141.0 (Cq), 139.7 (Cq), 138.9 (Cq), 138.7 (Cq), 138.0 (Cq), 136.7 (Cq), 136.5 (Cq), 135.9 (Cq), 131.3 (CH), 131.0 (2 CH), 129.3 (2 CH), 129.2 (2 CH), 127.3 (2 CH), 126.5 (CH), 125.8 (CH), 123.3 (CH), 123.2 (2 CH), 27.3 (CH₃), 27.1 (CH₃). IR (neat): 1678, 1599, 1561, 1456, 1432, 1407, 1357, 1306, 1266, 1223, 1182, 1159, 1112, 1073, 1016, 958, 876, 862, 839, 817, 764, 734, 675, 657, 612 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₆H₂₁O₂S: 397.1262; found: 397.1272.

(E)-1-(4-(2-(4-Fluorostyryl)benzo[b]thiophen-3-yl) phenyl)ethanone (1ab)

yellow solid, mp 163.4 - 164.1 °C, yield 86%, 160.2 mg.

¹H NMR (300 MHz, CDCl₃) $\delta = 8.14$ (d, J = 7.8 Hz, 2H), 7.82 (d, J = 7.8 Hz, 1H), 7.59 - 7.53 (m, 3H), 7.40 - 7.29 (m, 4H), 7.15 - 6.98 (m, 4H), 2.71 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 197.8$ (Cq), 162.6 (d, J = 246.9 Hz, Cq), 140.0 (Cq), 139.9 (Cq), 139.3 (Cq), 138.0 (Cq), 136.4 (Cq), 134.6 (Cq), 132.8 (d, J = 3.0 Hz, Cq), 130.8 (3 CH), 128.8 (2 CH), 128.3 (d, J = 8.3 Hz, 2 CH), 125.5 (CH), 124.9 (CH), 122.8 (CH), 122.4 (CH), 120.6 (CH), 115.8 (d, J = 21.6 Hz, 2 CH), 26.8 (CH₃). ¹⁹F NMR (188 MHz, CDCl₃): $\delta = -111.05$. IR (neat): 3060, 1680, 1602, 1564, 1551, 1507, 1491, 1456, 1433, 1403, 1356, 1319, 1304, 1265, 1230, 1214, 1182, 1158, 1112, 1096, 1070, 1016, 951, 933, 907, 875, 854, 816, 778, 763, 731, 684, 656 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₈H₁₄³⁵CIS: 297.0499; found: 297.0510.

(E)-2-(4-Fluorostyryl)-3-(4-methoxyphenyl)benzo[b] thiophene (1ac)

yellow solid, mp 108.2 - 108.9 °C, yield 85%, 153.2 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.81 (d, *J* = 8.4 Hz, 1H), 7.57 (d, *J* = 7.2 Hz, 1H), 7.41 - 7.30 (m, 6H), 7.20 - 6.96 (m, 6H), 3.91 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 162.5 (d, *J* = 246.2 Hz, Cq), 159.4 (Cq), 140.8 (Cq), 138.1 (2 Cq), 135.9 (Cq), 133.2 (d, *J* = 2.9 Hz, Cq), 131.7 (2 CH),

129.7 (CH), 128.2 (d, J = 7.9 Hz, 2 CH), 127.1 (Cq), 125.3 (CH), 124.6 (CH), 123.2 (CH), 122.3 (CH), 121.5 (CH), 115.8 (d, J = 21.7 Hz, 2 CH), 114.2 (2 CH), 55.5 (CH₃). ¹⁹F NMR (188 MHz, CDCl₃): $\delta = -111.66$. IR (neat): 2835, 1610, 1528, 1510, 1494, 1460, 1436, 1287, 1248, 1231, 1177, 1157, 1034, 952, 856, 816, 789, 763, 735 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₁₈OFS: 361.1062; found: 361.1075.

(E)-1-(4-(2-(3-(Benzo[d][1,3]dioxol-5-yl)benzo[b]thiophen-2-yl)vinyl)phenyl)ethan-1-one (1ad)

yellow solid, mp 148.3 - 148.7 °C, yield 85%, 169.4 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.91 (d, *J* = 8.1 Hz, 2H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.59 (d, *J* = 7.2 Hz, 1H), 7.48 (d, *J* = 8.1 Hz, 2H), 7.40 - 7.29 (m, 3H), 7.07 - 6.69 (m, 4H), 6.08 (s, 2H), 2.59 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 197.5 (Cq), 148.1 (Cq), 147.6 (Cq), 141.6 (Cq), 140.5 (Cq), 138.3 (Cq), 137.9 (Cq), 137.0 (Cq), 136.2 (Cq), 129.7 (CH), 128.9 (2 CH), 128.2 (Cq), 126.7 (2 CH), 125.7 (CH), 124.8 (CH), 124.3 (CH), 124.2 (CH), 123.4 (CH), 122.4 (CH), 110.8 (CH), 108.8 (CH), 101.5 (CH₂), 26.7 (CH₃). IR (neat): 1753, 1679, 1599, 1503, 1482, 1367, 1271, 1237, 1220, 1085, 1038, 957, 916, 865, 816, 765, 735 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₁₉O₃S: 399.1055; found: 399.1049.

(E)-5-(2-(3,4-Dichlorostyryl)benzo[b]thiophen-3-yl)benzo[d][1,3]dioxole (1ae)

yellow solid, mp 162.2 - 163.1 °C, yield 79%, 168.0 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.81 (d, *J* = 7.2 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.48 (s, 1H), 7.39 - 7.19 (m, 5H), 7.01 - 6.87 (m, 4H), 6.09 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ = 148.1 (Cq), 147.6 (Cq), 140.6 (Cq), 138.2 (Cq), 137.7 (Cq), 137.1 (2 Cq), 136.7 (Cq), 132.9 (Cq), 131.5 (Cq), 130.7 (CH), 128.4 (CH), 128.2 (CH), 125.7 (CH), 125.6 (CH), 124.8 (CH), 124.2 (CH), 123.4 (CH), 123.3 (CH), 122.3 (CH), 110.7 (CH), 108.8 (CH), 101.5 (CH₂). IR (neat): 1754, 1680, 1552, 1502, 1483, 1439, 1367, 1314, 1236, 1218, 1132, 1093, 1039, 937, 908, 884, 810, 763, 733, 674 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₂₃H₁₅³⁵Cl₂O₂S: 425.0164; found: 425.0156.

(E)-4-(2-(3,4-Dichlorostyryl)benzo[b]thiophen-3-yl)phenol (1af)

yellow solid, mp 153.3 - 154.0 °C, yield 92%, 182.8 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.81 (d, *J* = 7.5 Hz, 1H), 7.57 (d, *J* = 7.5 Hz, 1H), 7.46 (s, 1H), 7.39 - 7.17 (m, 7H), 7.02 (d, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 15.9 Hz, 1H), 5.24 (br, 1H). ¹³C NMR (75 MHz, CDCl₃) δ = 155.5 (Cq), 140.6 (Cq), 138.2 (Cq), 137.4 (Cq), 137.2 (Cq), 136.8 (Cq),

132.9 (Cq), 131.9 (2 CH), 131.4 (Cq), 130.6 (CH), 128.3 (CH), 128.2 (CH), 127.1 (Cq), 125.7 (CH), 125.6 (CH), 124.7 (CH), 123.4 (2 CH), 122.4 (CH), 115.8 (2 CH). IR (neat): 1611, 1583, 1552, 1527, 1496, 1471, 1433, 1393, 1355, 1317, 1266, 1219, 1172, 1129, 1101, 1029, 941, 906, 880, 846, 810 cm⁻¹. HRMS (ESI): m/z [M-H]⁻ calcd for C₂₂H₁₃OS³⁵Cl₂: 395.0064; found: 395.0064.

(E)-3-(4-Methoxyphenyl)-2-(3-methoxystyryl)benzo [b]thiophene (1ag)

yellow oil, yield 89%, 165.8 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.84 (d, *J* = 8.4 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.44 - 7.24 (m, 6H), 7.12 - 6.97 (m, 5H), 6.84 (d, *J* = 8.1 Hz, 1H), 3.94 (s, 3H), 3.84 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.9 (Cq), 159.4 (Cq), 140.8 (Cq), 138.5 (Cq), 138.1 (2 Cq), 136.0 (Cq), 131.7 (2 CH), 130.8 (CH), 129.7 (CH), 127.1 (Cq), 125.3 (CH), 124.6 (CH), 123.2 (CH), 122.3 (CH), 122.1 (CH), 119.3 (CH), 114.2 (2 CH), 113.4 (CH), 112.3 (CH), 55.5 (CH₃), 55.4 (CH₃). IR (neat): 2834, 1734, 1608, 1597, 1575, 1528, 1498, 1460, 1435, 1347, 1287, 1246, 1209, 1176, 1156, 1108, 1034, 949, 908, 846, 815, 782, 762, 734, 687 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₂₁O₂S: 373.1262; found: 373.1254.

(E)-3-(4-Methoxyphenyl)-2-(3,4,5-trimethoxystyryl) benzo[b]thiophene (1ah)

yellow solid, mp 167.4 - 167.7 °C, yield 87%, 188.2 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.81 (d, *J* = 7.2 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.43 - 7.29 (m, 4H), 7.17 - 6.94 (m, 4H), 6.64 (s, 2H), 3.91 - 3.85 (m, 12H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.4 (Cq), 153.5 (2 Cq), 140.8 (Cq), 138.1 (Cq), 138.0 (Cq), 135.6 (Cq), 132.8 (Cq), 131.7 (2 CH), 131.1 (CH), 127.2 (Cq), 125.2 (CH), 124.6 (CH), 123.2 (CH), 122.3 (CH), 121.2 (CH), 114.2 (2 CH), 104.0 (2 CH), 61.1 (CH₃), 56.4 (2 CH₃), 55.5 (CH₃), one C not seen. IR (neat): 1734, 1610, 1578, 1527, 1506, 1494, 1463, 1453, 1416, 1357, 1335, 1287, 1247, 1234, 1177, 1153, 1126, 1104, 1034, 1005, 942, 908, 845, 812, 788, 764 cm⁻¹. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₆H₂₄O₄NaS: 455.1293; found: 455.1302.

(E)-4-(2-(3-(4-methoxyphenyl)benzo[b]thiophen-2-yl)vinyl)pyridine (1ai)

yellow oil and solid, yield 75%, 128.8 mg.

¹H NMR (300 MHz, DMSO) δ = 8.51 (d, *J* = 5.7 Hz, 2H), 8.00 (d, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.48 – 7.35 (m, 7H), 7.16 (d, *J* = 8.7 Hz, 2H), 7.08 (d, *J* = 16.2 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (75 MHz, DMSO) δ = 159.6 (Cq), 150.6 (2 CH), 143.8 (Cq), 140.1 (Cq), 138.1 (Cq), 137.8 (Cq), 136.8 (Cq), 131.9 (2

CH), 128.7 (CH), 126.5 (CH), 126.0 (Cq), 125.6 (CH), 125.5 (CH), 123.6 (CH), 123.1 (CH), 121.2 (2 CH), 114.9 (2 CH), 55.7 (CH₃). IR (neat): 1593, 1553, 1526, 1501, 1486, 1460, 1415, 1358, 1285, 1247, 1177, 1156, 1109, 1068, 1032, 964, 944, 838, 814, 800, 765, 735 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₁₈NOS: 344.1109; found: 344.1106.

(*E*)-1-(4-(2-(2-(benzo[b]thiophen-2-yl)vinyl)benzo[b]thiophen-3-yl)phenyl)ethan-1-one (1aj) yellow solid, mp 206.9 – 207.2 °C, yield 80%, 164.2 mg.

¹H NMR (300 MHz, DMSO) $\delta = 8.19$ (d, J = 7.8 Hz, 2H), 8.03 (d, J = 7.8 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.81 – 7.76 (m, 1H), 7.65 (d, J = 8.1 Hz, 2H), 7.59 – 7.33 (m, 7H), 7.01 (d, J = 15.9 Hz, 1H), 2.69 (s, 3H). ¹³C NMR (75 MHz, DMSO) $\delta = 198.1$ (Cq), 141.8 (Cq), 140.3 (Cq), 139.6 (Cq), 138.9 (Cq), 138.8 (Cq), 138.2 (Cq), 137.9 (Cq), 136.7 (Cq), 135.5 (Cq), 131.0 (2 CH), 129.3 (2 CH), 126.5 (CH), 126.0 (CH), 125.9 (CH), 125.8 (CH), 125.7 (CH), 125.4 (CH), 124.4 (CH), 123.2 (CH), 123.1 (CH), 122.9 (CH), 122.4 (CH), 27.3 (CH₃). **IR** (neat): 1679, 1602, 1552, 1530, 1455, 1436, 1403, 1356, 1307, 1264, 1213, 1182, 1159, 1111, 1069, 1016, 958, 933, 855, 817, 764, 747, 734, 726 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₆H₂₀OS₂: 411.0877; found: 411.0869.

(*E*)-1-(4-(2-(3-(4-Fluorophenyl)benzo[b]thiophen-2-yl)vinyl)phenyl)ethanone (1ak) yellow solid, mp 144.3 - 144.5 °C, yield 82%, 152.7 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.93 (d, *J* = 8.4 Hz, 2H), 7.85 (d, *J* = 7.5 Hz, 1H), 7.57 - 7.24 (m, 10H), 7.08 (d, *J* = 16.9 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 197.4 (Cq), 162.7 (d, *J* = 246.2 Hz, Cq), 141.4 (Cq), 140.4 (Cq), 138.3 (Cq), 138.2 (Cq), 136.3 (Cq), 136.2 (Cq), 132.2 (d, *J* = 8.0 Hz, 2 CH), 130.6 (d, *J* = 3.1 Hz, Cq), 130.1 (CH), 129.0 (2 CH), 126.7 (2 CH), 125.8 (CH), 124.9 (CH), 123.8 (CH), 123.2 (CH), 122.4 (CH), 115.9 (d, *J* = 21.4 Hz, 2 CH), 26.7 (CH₃). ¹⁹F NMR (188 MHz, CDCl₃): δ = - 111.67. IR (neat): 1679, 1599, 1561, 1526, 1492, 1433, 1409, 1358, 1305, 1269, 1258, 1223, 1182, 1158, 1095, 1015, 958, 943, 908, 861, 842, 815, 764 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₈OFS: 373.1062; found: 373.1067.

(E)-1-(4-(4-(2-(methylthio)phenyl)but-1-en-3-yn-1-yl)phenyl)ethanone 11

white solid, mp 80.1 - 80.3 °C, yield 71%, 103.8 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.92 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 7.5 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.18 - 7.06 (m, 3H), 6.57 (d, *J* = 16.2 Hz, 1H), 2.59 (s, 3H), 2.51 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 197.4 (Cq), 141.8 (Cq), 140.8 (Cq), 140.1 (CH), 136.8 (Cq), 132.5 (CH), 129.1 (CH), 128.9 (2 CH), 126.5 (2 CH), 124.4 (CH), 124.2 (CH), 121.2 (Cq),

111.0 (CH), 95.0 (Cq), 90.9 (Cq), 26.7 (CH₃), 15.2 (CH₃). IR (neat): 1677, 1598, 1560, 1506, 1463, 1433, 1409, 1357, 1308, 1270, 1262, 1241, 1182, 1114, 1076, 1040, 1014, 959, 945, 860, 812, 751 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₇OS: 293.1000; found: 293.0992.

(Z)-1-(4-(2-(4-Methoxystyryl)benzo[b]thiophen-3-yl)phenyl)ethanone (1al)

yellow solid, mp 143.7 - 144.1 °C, yield 89%, 171.1 mg.

¹H NMR (300 MHz, DMSO) $\delta = 8.11$ (d, J = 8.1 Hz, 2H), 7.90 - 7.86 (m, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.54 - 7.50 (m, 1H), 7.39 - 7.28 (m, 4H), 6.90 (d, J = 8.1 Hz, 2H), 6.72 (d, J = 12.0 Hz, 1H), 6.47 (d, J = 12.0 Hz, 1H), 3.77 (s, 3H), 2.64 (s, 3H), 1.38 (cyclohexane). ¹³C NMR (75 MHz, DMSO) $\delta = 198.0$ (Cq), 159.6 (Cq), 139.6 (Cq), 139.0 (Cq), 138.4 (Cq), 136.9 (Cq), 136.4 (Cq), 135.5 (Cq), 133.4 (CH), 130.8 (2 CH), 130.7 (2 CH), 129.0 (2 CH), 128.6 (Cq), 125.8 (CH), 125.3 (CH), 123.0 (CH), 122.7 (CH), 121.0 (CH), 114.3 (2 CH), 55.6 (CH₃), 27.3 (CH₃), 26.8 (cyclohexane). IR (neat): 1735, 1680, 1603, 1510, 1457, 1435, 1404, 1356, 1305, 1266, 1245, 1175, 1143, 1110, 1081, 1032, 1018, 951, 907, 875, 850, 819, 764, 728 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₂₁O₂S: 385.1262; found: 385.1260.

(Z)-1-(4-(2-(3-(4-Methoxyphenyl)benzo[b]thiophen-2-yl)vinyl)phenyl)ethanone (1am)

yellow solid, mp 123.2 – 123.6 °C, yield 83%, 159.6 mg.

¹H NMR (300 MHz, DMSO) $\delta = 7.94$ (d, J = 8.1 Hz, 2H), 7.82 (d, J = 4.8 Hz, 1H), 7.54 - 7.51 (m, 3H), 7.41 - 7.34 (m, 4H), 7.11 (d, J = 8.1 Hz, 2H), 6.78 (d, J = 12.0 Hz, 1H), 6.65 (d, J = 12.0 Hz, 1H), 3.84 (s, 3H), 2.59 (s, 3H). ¹³C NMR (75 MHz, DMSO) $\delta = 197.8$ (Cq), 159.5 (Cq), 141.6 (Cq), 139.0 (Cq), 138.8 (Cq), 137.8 (Cq), 136.4 (Cq), 134.3 (Cq), 131.8 (2 CH), 131.2 (CH), 129.7 (2 CH), 128.8 (2 CH), 126.6 (Cq), 125.9 (CH), 125.1 (CH), 124.6 (CH), 123.1 (CH), 122.9 (CH), 114.7 (2 CH), 55.7 (CH₃), 27.1 (CH3). IR (neat): 1675, 1612, 1595, 1559, 1525, 1503, 1491, 1410, 1357, 1288, 1269, 1246, 1181, 1153, 1108, 1060, 1033, 958, 941, 907, 863, 838, 813, 769, 728 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₂₁O₂S: 385.1262; found: 385.1261.

Procedure for the Synthesis of 1ca and 16

In a round-bottomed flask, under an argon atmosphere, containing the chlorovinylic substrate (0.5 mmol) and $Fe(acac)_3$ (0.05 mmol) was added THF (6 mL). The reaction mixture was cooled to - 30 °C and EtMgBr (0.75 mmol of typically 1 M solution in THF) was added dropwise (for the synthesis of **18** the quantity of EtMgBr was 1.5 mmol). The red colored solution turned dark brown to black (depending on the Grignard reagent quantity). The reaction mixture was stirred

until the disappearance of starting material as judged by TLC. A 1 M aq HCl solution (5.0 mL) was then added, and the two layers were separated. After extraction using Et_2O (2 × 20 mL), the combined organic layers were washed three times with H₂O, then dried over MgSO₄, filtered, and concentrated under vacuum. The crude residue was then purified by silica gel column chromatography.

(E)-2-(But-1-en-1-yl)-3-(4-methoxyphenyl) benzo[b]thiophene (1ca)

yellow solid, mp 73.6 - 73.9 °C, yield 84 %, 123.7 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.80 (d, *J* = 6.9 Hz, 1H), 7.55 (d, *J* = 6.9 Hz, 1H), 7.40 - 7.29 (m, 4H), 7.08 (d, *J* = 8.4 Hz, 2H), 6.59 (d, *J* = 15.6 Hz, 1H), 6.33 - 6.23 (m, 1H), 3.93 (s, 3H), 2.29 - 2.19 (m, 2H), 1.10 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.1 (Cq), 140.9 (Cq), 138.6 (Cq), 137.8 (Cq), 135.7 (CH), 133.5 (Cq), 131.6 (2 CH), 127.4 (Cq), 124.7 (CH), 124.3 (CH), 122.9 (CH), 122.2 (2 CH), 114.1 (2 CH), 55.4 (CH₃), 26.4 (CH₂), 13.6 (CH₃). IR (neat): 1751, 1682, 1610, 1529, 1499, 1458, 1434, 1381, 1356, 1287, 1246, 1206, 1181, 1132, 1107, 1083, 1034, 955, 910, 841, 812, 762, 732 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₉OS: 295.1157; found: 295.1160.

2-(2-Ethylbut-1-en-1-yl)-3-(4-methoxyphenyl)benzo[b] thiophene (16)

colorless oil, yield 74 %, 119.3 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.83 - 7.80 (m, 1H), 7.59 - 7.55 (m, 1H), 7.37 - 7.28 (m, 4H), 7.02 (d, *J* = 7.8 Hz, 2H), 6.27 (s, 1H), 3.89 (s, 3H), 2.50 (q, *J* = 7.5 Hz, 2H), 2.17 (q, *J* = 7.5 Hz, 2H), 1.12 (t, *J* = 7.5 Hz, 3H), 1.03 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 158.8 (Cq), 148.6 (Cq), 139.7 (Cq), 138.8 (Cq), 136.1 (Cq), 134.2 (Cq), 131.6 (2 CH), 127.9 (Cq), 124.1 (CH), 124.0 (CH), 122.7 (CH), 121.8 (CH), 116.3 (CH), 113.8 (2 CH), 55.3 (CH₃), 30.4 (CH₂), 25.0 (CH₂), 12.9 (2 CH₃). IR (neat): 2965, 1610, 1524, 1492, 1460, 1431, 1352, 1287, 1247, 1176, 1157, 1108, 1069, 1035, 936, 870, 830, 801, 764, 734 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₂₁OS: 321.1313; found: 321.1323.

General procedure for the Synthesis of (E)-12, (E)-13

To a solution of $PdCl_2(PhCN)_2$ (9.6 mg, 0.025 mmol), (*E*)-chlorovinylic substrate (0.5 mmol), CuI (9.5 mg, 0.05 mmol) in 3 mL of piperidine was added the required 1-alkyne (0.6 mmol) in 1 mL of piperidine. The stirring was continued at 60 °C until TLC analysis indicated complete consumption of the chloroenyne. The reaction mixture was hydrolyzed with H₂O (10 mL) and

HCl 0.5M (10 mL) and extracted with diethylether (3 x 10 mL). The organic layers were dried over MgSO₄ and the solvent was removed in vacuo. Purification by column chromatography afforded the expected (E)-enynes.

(E) - 3 - (4 - Methoxy phenyl) - 2 - (4 - (2 - (methylthio) phenyl) but - 1 - en - 3 - yn - 1 - yl) benzo[b] thiophene benze[b] thiophene benzo[b] thiophene benze[b] thiophene benzo[

(12)

brown oil, yield 91%, 187.7 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.1 Hz, 1H), 7.60 (d, *J* = 7.5 Hz, 1H), 7.44 - 7.26 (m, 6H), 7.21 - 7.08 (m, 5H), 6.43 (d, *J* = 15.9 Hz, 1H), 3.93 (s, 3H), 2.51 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.5 (Cq), 141.6 (Cq), 140.5 (Cq), 138.4 (Cq), 137.3 (Cq), 136.9 (Cq), 134.1 (CH), 132.4 (CH), 131.7 (2 CH), 128.9 (CH), 126.7 (Cq), 125.8 (CH), 124.7 (CH), 124.4 (CH), 124.3 (CH), 123.6 (CH), 122.3 (CH), 121.5 (Cq), 114.3 (2 CH), 109.7 (CH), 95.4 (Cq), 90.8 (Cq), 55.5 (CH₃), 15.2 (CH₃). IR (neat): 1680, 1609, 1598, 1576, 1525, 1494, 1462, 1433, 1357, 1320, 1287, 1246, 1209, 1178, 1160, 1130, 1109, 1079, 1035, 936, 908, 844, 814, 765, 751 cm⁻¹. HRMS (APCI): m/z [M+H]⁺ calcd for C₂₆H₂₁OS₂: 413.1028; found: 413.1017.

(*E*)-*N*-(2-(4-(3-(4-Methoxyphenyl)benzo[b]thiophen-2-yl)but-3-en-1-yn-1-yl)phenyl)-*N*,4-dim ethyl benzenesulfonamide (13)

yellow solid, mp 80.9 - 81.2 °C, yield 75 %, 206.1 mg.

¹H NMR (300 MHz, CDCl₃) δ = 7.82 (d, *J* = 8.1 Hz, 1H), 7.61 - 7.57 (m, 3H), 7.42 - 7.27 (m, 8H), 7.17 - 7.08 (m, 4H), 6.89 (d, *J* = 15.9 Hz, 1H), 5.91 (d, *J* = 15.9 Hz, 1H), 3.92 (s, 3H), 3.30 (s, 3H), 2.30 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ = 159.7 (Cq), 143.5 (Cq), 142.2 (Cq), 140.4 (Cq), 138.3 (Cq), 137.4 (Cq), 136.5 (Cq), 136.2 (Cq), 133.9 (CH), 133.5 (CH), 131.6 (2 CH), 131.4 (CH), 129.6 (2 CH), 129.1 (CH), 128.0 (CH), 127.8 (2 CH), 126.5 (Cq), 126.0 (CH), 124.8 (CH), 123.7 (CH), 122.6 (Cq), 122.4 (CH), 114.3 (2 CH), 109.3 (CH), 93.8 (Cq), 90.0 (Cq), 55.5 (CH₃), 38.1 (CH₃), 21.6 (CH₃). IR (neat): 1610, 1525, 1495, 1482, 1443, 1348, 1288, 1248, 1210, 1176, 1155, 1109, 1090, 1070, 1036, 938, 910, 891, 867, 845, 815, 765, 732, 710, 696, 676, 650 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₃H₂₈NO₃S₂: 550.1511; found: 550.1503.

Procedure for the Synthesis of 14

Toluene (3 mL) was added to a mixture of $AuBr_3$ (21.8 mg, 0.05 mmol) and **13** (274.9 mg, 0.5 mmol) at rt and the mixture was warmed immediately to 80 °C. After complete consumption of the starting material, as monitored by TLC, the reaction mixture was cooled to rt and filtered

through a short SiO_2 pad, and the filtrate was concentrated. The residue was purified by silica-gel column chromatography.

(*E*)-2-(2-(3-(4-Methoxyphenyl)benzo[b]thiophen-2-yl)vinyl)-1-methyl-3-tosyl-1*H*-indole (14) brown solid, mp 169.5 - 169.7 °C, yield 90 %, 247.4 mg.

¹H NMR (300 MHz, CDCl₃) $\delta = 8.29 - 8.25$ (m, 1H), 7.92 - 7.84 (m, 3H), 7.74 (d, J = 16.5 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.46 - 7.26 (m, 8H), 7.20 - 7.15 (m, 2H), 7.11 - 7.05 (m, 2H), 3.91 (s, 3H), 3.73 (s, 3H), 2.33 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) $\delta = 159.6$ (Cq), 143.1 (Cq), 141.3 (Cq), 140.4 (Cq), 140.3 (Cq), 138.9 (Cq), 138.3 (Cq), 137.7 (Cq), 137.1 (Cq), 131.6 (2 CH), 130.7 (CH), 129.6 (2 CH), 126.6 (Cq), 126.5 (2 CH), 126.1 (CH), 125.2 (Cq), 124.9 (CH), 124.1 (CH), 123.7 (CH), 122.8 (CH), 122.6 (CH), 120.5 (CH), 117.1 (CH), 114.3 (2 CH), 113.5 (Cq), 110.0 (CH), 55.5 (CH₃), 32.4 (CH₃), 21.6 (CH₃). IR (neat): 2957, 1732, 1609, 1531, 1505, 1458, 1437, 1393, 1317, 1287, 1249, 1213, 1179, 1159, 1141, 1109, 1082, 1033, 1017, 976, 909, 843, 811, 765, 737, 724, 705 cm⁻¹. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₃H₂₈NO₃S₂: 550.1511; found: 550.1503.

References

(1) D. C. Neckers and F. L. Wagenaar, J. Org. Chem., 1983, 48, 1725-1732.

Fig. 1 ¹H NMR of (E)-(2-(4-chlorobut-3-en-1-yn-1-yl)phenyl)(methyl)sulfane 5a

Fig. 2¹³C NMR of (*E*)-(2-(4-chlorobut-3-en-1-yn-1-yl)phenyl)(methyl)sulfane 5a

Fig. 4 ¹³C NMR of (Z)-(2-(4-chlorobut-3-en-1-yn-1-yl)phenyl)(methyl)sulfane 5a

Fig. 6¹³C NMR of (*E*)-3-(4-chlorobut-3-en-1-yn-1-yl)-2-(methylthio)pyridine 5b

Fig. 8¹³C NMR of (2-(4,4-dichlorobut-3-en-1-yn-1-yl)phenyl)(methyl)sulfane 5c

Fig. 10¹³C NMR of (*E*)-3-bromo-2-(2-chlorovinyl)benzo[b]thiophene 6a

Fig. 12¹³C NMR of (Z)-3-bromo-2-(2-chlorovinyl)benzo[b]thiophene 6a

Fig. 14 ¹H NMR of (*E*)-3-bromo-2-(2-chlorovinyl)thieno[2,3-b]pyridine 6b

Fig. 16 ¹³C NMR of 3-bromo-2-(2,2-dichlorovinyl)benzo[b]thiophene 6c

Fig. 18¹³C NMR of (*E*)-1-(4-(2-(2-chlorovinyl)benzo[b]thiophen-3-yl)phenyl)ethanone 8a

Fig. 20¹³C NMR of (*E*)-2-(2-chlorovinyl)-3-(4-methoxyphenyl)benzo[b]thiophene 8b

Fig. 21 ¹H NMR of (E)-5-(2-(2-chlorovinyl)benzo[b]thiophen-3-yl)benzo[d][1,3]dioxole 8c

Fig. 22 ¹³C NMR of (*E*)-5-(2-(2-chlorovinyl)benzo[b]thiophen-3-yl)benzo[d][1,3]dioxole 8c

Fig. 24 ¹³C NMR of (*E*)-4-(2-(2-chlorovinyl)benzo[b]thiophen-3-yl)phenol 8d

Fig. 26¹³C NMR of (*E*)-3-(3-chlorophenyl)-2-(2-chlorovinyl)benzo[b]thiophene 8e

Fig. 28 ¹³C NMR of (*E*)-2-(2-chlorovinyl)-3-(4-vinylphenyl)benzo[b]thiophene 8f

Fig. 30 ¹³C NMR of (E)-1-(4-(2-(2-chlorovinyl)thieno[2,3-b]pyridin-3-yl)phenyl)ethanone 8g

Fig. 31 ¹H NMR of (E)-1-(4-(2-(3-(4-acetylphenyl)benzo[b]thiophen-2-yl)vinyl)phenyl)ethan-1-one 1aa

Fig. 32 ¹³C NMR of (E)-1-(4-(2-(3-(4-acetylphenyl)benzo[b]thiophen-2-yl)vinyl)phenyl)ethan-1-one 1aa

Fig. 34 ¹³C NMR of (E)-1-(4-(2-(4-fluorostyryl)benzo[b]thiophen-3-yl)phenyl)ethanone 1ab

Fig. 35 ¹⁹F NMR of (E)-1-(4-(2-(4-fluorostyryl)benzo[b]thiophen-3-yl)phenyl)ethanone 1ab

Fig. 36 ¹H NMR of (*E*)-2-(4-fluorostyryl)-3-(4-methoxyphenyl)benzo[b]thiophene 1ac

Fig. 37 ¹³C NMR of (*E*)-2-(4-fluorostyryl)-3-(4-methoxyphenyl)benzo[b]thiophene 1ac

Fig. 38 ¹⁹F NMR of (E)-2-(4-fluorostyryl)-3-(4-methoxyphenyl)benzo[b]thiophene 1ac

Fig. 39 the ¹H NMR of

(E) - 1 - (4 - (2 - (3 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - 1 - (4 - (2 - (3 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - 1 - (4 - (2 - (3 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - 1 - (4 - (2 - (3 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - 1 - (4 - (2 - (3 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - 1 - (4 - (2 - (3 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - 1 - (4 - (2 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - 1 - (4 - (2 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - (4 - (2 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - (4 - (2 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - (4 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - (4 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - (4 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - (4 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - (4 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) phenyl) ethan - 1 - one 1 ad (E) - (4 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) ethan - 1 - one 1 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)vinyl) ethan - 2 - (benzo[d][1,3]dioxol - 5 - yl)benzo[b]thiophen - 2 - yl)benzo[

Fig. 40¹³C NMR of

 $(E) \hbox{-} 1-(4-(2-(3-(benzo[d][1,3]dioxol-5-yl)benzo[b]thiophen-2-yl)vinyl) phenyl) ethan-1-one \ \textbf{1ad}$

Fig. 41 ¹H NMR of (E)-5-(2-(3,4-dichlorostyryl)benzo[b]thiophen-3-yl)benzo[d][1,3]dioxole 1ae

Fig. 42 ¹³C NMR of (E)-5-(2-(3,4-dichlorostyryl)benzo[b]thiophen-3-yl)benzo[d][1,3]dioxole 1ae

Fig. 44 ¹³C NMR of (*E*)-4-(2-(3,4-dichlorostyryl)benzo[b]thiophen-3-yl)phenol 1af

Fig. 46 ¹³C NMR of (E)-3-(4-methoxyphenyl)-2-(3-methoxystyryl)benzo[b]thiophene 1ag

Fig. 48 ¹³C NMR of (E)-3-(4-methoxyphenyl)-2-(3,4,5-trimethoxystyryl)benzo[b]thiophene 1ah

Fig. 50 ¹³C NMR of (E)-4-(2-(3-(4-methoxyphenyl)benzo[b]thiophen-2-yl)vinyl)pyridine 1ai

Fig. 51 ¹H NMR of (E)-1-(4-(2-(2-(benzo[b]thiophen-2-yl)vinyl)benzo[b]thiophen-3-yl)phenyl)ethan-1-one

Fig. 52¹³C NMR of

 $(E) \hbox{-} 1-(4-(2-(benzo[b]thiophen-2-yl)vinyl) benzo[b]thiophen-3-yl) phenyl) ethan-1-one 1 a jabel{eq:expectation} 1 a jabel{eq:expectation} a statistical stat$

Fig. 53 ¹H NMR of (*E*)-1-(4-(2-(3-(4-fluorophenyl)benzo[b]thiophen-2-yl)vinyl)phenyl)ethanone

Fig. 54 ¹³C NMR of (*E*)-1-(4-(2-(3-(4-fluorophenyl)benzo[b]thiophen-2-yl)vinyl)phenyl)ethanone

1ak

 $\label{eq:Fig. 55 19} F NMR of (E) - 1 - (4 - (2 - (3 - (4 - fluorophenyl)benzo[b]thiophen-2-yl)vinyl) phenyl) ethanone$

Fig. 56 ¹H NMR of (*E*)-1-(4-(4-(2-(methylthio)phenyl)but-1-en-3-yn-1-yl)phenyl)ethanone

11

Fig. 57 ¹³C NMR of (E)-1-(4-(4-(2-(methylthio)phenyl)but-1-en-3-yn-1-yl)phenyl)ethanone

Fig. 58 ¹H NMR of (*E*)-1-(4-(2-(3-bromobenzo[b]thiophen-2-yl)vinyl)phenyl)ethanone

⁹

Fig. 59 ¹³C NMR of (*E*)-1-(4-(2-(3-bromobenzo[b]thiophen-2-yl)vinyl)phenyl)ethanone

Fig. 60 ¹H NMR of

 $(E) \hbox{-} 3-(4-methoxyphenyl) \hbox{-} 2-(4-(2-(methylthio)phenyl) but-1-en-3-yn-1-yl) benzo[b] thiophene and the second sec$

12

(*E*)-N-(2-(4-(3-(4-methoxyphenyl)benzo[b]thiophen-2-yl)but-3-en-1-yn-1-yl)phenyl)-N,4-dimethylbenzene sulfonamide **13**

Fig. 63 ¹H NMR of (*E*)-N-(2-(4-(3-(4-methoxyphenyl)benzo[b]thiophen-2-yl)but-3-en-1-yn-1-yl)phenyl)-N,4-dimethylbenzenesulfonamide **13**

Fig. 64 ¹H NMR of

(E) - 2 - (2 - (3 - (4 - methoxyphenyl) benzo[b] thiophen - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl - 3 - tosyl - 1 H - indole - 2 - yl) vinyl - 3 - tosyl - 1 H - indole - 3 - yl) vinyl - 3 - tosyl - 1 H - indole - 3 - yl) vinyl - 3 - tosyl - 3 - tosy

14

Fig. 65 ¹³C NMR of

(E) - 2 - (2 - (3 - (4 - methoxyphenyl) benzo[b] thiophen - 2 - yl) vinyl) - 1 - methyl - 3 - tosyl - 1 H-indole - 3 - 1

14

Fig. 66 ¹H NMR of (E)-2-(but-1-en-1-yl)-3-(4-methoxyphenyl)benzo[b]thiophene 1ca

Fig. 68 ¹H NMR of (Z)-1-(4-(2-(2-chlorovinyl)benzo[b]thiophen-3-yl)phenyl)ethanone 8a

Fig. 69 ¹³C NMR of (Z)-1-(4-(2-(2-chlorovinyl)benzo[b]thiophen-3-yl)phenyl)ethanone 8a

Fig. 70 ¹H NMR of (Z)-2-(2-chlorovinyl)-3-(4-methoxyphenyl)benzo[b]thiophene 8b

Fig. 72 ¹H NMR of (Z)-1-(4-(2-(4-methoxystyryl)benzo[b]thiophen-3-yl)phenyl)ethanone 1al

Fig. 74¹H NMR of (Z)-1-(4-(2-(3-(4-methoxyphenyl)benzo[b]thiophen-2-yl)vinyl)phenyl)ethanone 1am

Fig. 75 ¹³C NMR of (Z)-1-(4-(2-(3-(4-methoxyphenyl)benzo[b]thiophen-2-yl)vinyl)phenyl)ethanone 1am

Fig. 76 ¹H NMR of 2-(2,2-dichlorovinyl)-3-(4-methoxyphenyl)benzo[b]thiophene 15

Fig. 77 ¹³C NMR of 2-(2,2-dichlorovinyl)-3-(4-methoxyphenyl)benzo[b]thiophene 15

Fig. 78 ¹H NMR of 2-(2-ethylbut-1-en-1-yl)-3-(4-methoxyphenyl)benzo[b]thiophene 16

Fig. 79 ¹³C NMR of 2-(2-ethylbut-1-en-1-yl)-3-(4-methoxyphenyl)benzo[b]thiophene 16

Fig. 80 ¹H NMR of (*E*)-(2-(4-chlorobut-3-en-1-yn-1-yl)phenyl)(methyl)selane 18

Fig. 81 ¹³C NMR of (E)-(2-(4-chlorobut-3-en-1-yn-1-yl)phenyl)(methyl)selane 18

Fig. 82 ¹H NMR of (E)-3-bromo-2-(2-chlorovinyl)benzo[b]selenophene 19

Fig. 83 ¹³C NMR of (*E*)-3-bromo-2-(2-chlorovinyl)benzo[b]selenophene 29