Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Synthesis of the Src SH2 domain protein and its application in bioassays for mirror-image screening

Keitou Shu,^{a,b} Taro Noguchi,^a Kaori Honda,^c Yasumitsu Kondoh,^c Hiroyuki Osada,^c Hiroaki Ohno,^a Nobutaka Fujii,^a and Shinya Oishi^{a,*}

 ^a Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
^b Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto 606-8306, Japan
^c Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan

Contents	
Experimental procedures	S2-S3
Analytical HPLC chromatograms and mass spectrometry data of synthetic peptides	S4-S20

Experimental procedures

D-Src(145-187) (**D-3a).** By the identical procedure described for the synthesis of peptide **L-3a**, thioester **D-3a** was synthesized (7.8 mg, 2.1% yield) from H-Rink Amide-ChemMatrix resin (40 mg × 3 portions, 0.048-0.072 mmol). MS(ESI): Calcd for C₂₃₁H₃₅₇N₆₄O₇₁S: 5198.83 (MH⁺); observed: $[M+6H]^{6+}$ m/z = 867.4, $[M+5H]^{5+}$ m/z = 1040.7, $[M+4H]^{4+}$ m/z = 1300.4, $[M+3H]^{3+}$ m/z = 1733.4.

L-Src(145-187)^{TMR} (**L-3b**). By the identical procedure described for the synthesis of peptide **L-3a**, thioester **L-3b** was synthesized (3.5 mg, 2.7% yield) from H-Rink Amide-ChemMatrix resin (40 mg, 0.016-0.024 mmol). TMR (43 mg, 0.1 mmol) was coupled by using *N*,*N*'-diisopropylcarbodiimide (DIC) (15.5 mL, 0.1 mmol)/HOBt·H₂O (15.3 mg, 0.1 mmol) in DMF for 4 h. MS(ESI): Calcd for C₂₅₉H₃₈₂N₆₇O₇₆S: 5682.36 (MH⁺); observed: $[M+7H]^{7+} m/z = 812.7 [M+6H]^{6+} m/z = 948.0, [M+5H]^{5+} m/z = 1137.4, [M+4H]^{4+} m/z = 1421.3.$

D-Src(145-187)^{TMR} (**D-3b**). By the identical procedure described for the synthesis of peptide L-**3b**, thioester **D-3b** was synthesized (3.8 mg, 2.9% yield) from H-Rink Amide-ChemMatrix resin (40 mg, 0.016-0.024 mmol). MS(ESI): Calcd for C₂₅₉H₃₈₂N₆₇O₇₆S: 5682.36 (MH⁺); observed: $[M+7H]^{7+}$ m/z = 812.6, $[M+6H]^{6+}$ m/z = 947.9, $[M+5H]^{5+}$ m/z = 1137.3, $[M+4H]^{4+}$ m/z = 1421.4.

D-Src(188-251) (D-4). By the standard protocol for peptide synthesis, peptide **D-4** was synthesized (5.5 mg, 1.6% yield) from H-Rink Amide-ChemMatrix resin (40 mg × 2 portions, 0.032-0.048 mmol). MS(ESI): Calcd for C₃₁₈H₅₀₀N₉₁O₉₄S₃: 7198.22 (MH⁺); observed: $[M+8H]^{8+}$ m/z = 900.7, $[M+7H]^{7+}$ m/z = 1029.1, $[M+6H]^{6+}$ m/z = 1200.1, $[M+5H]^{5+}$ m/z = 1440.2, $[M+4H]^{4+}$ m/z = 1799.7.

D-Src(145-251) (**D-5a).** By the identical procedure described for the synthesis of peptide **L-5a**, peptide **D-4a** was synthesized (1.1 mg, 18% yield). MS(ESI): Calcd for $C_{541}H_{848}N_{155}O_{163}S_3$: 12227.84 (MH⁺); observed: $[M+15H]^{15+} m/z = 813.9$, $[M+14H]^{14+} m/z = 874.5$, $[M+13H]^{13+} m/z = 941.6$, $[M+12H]^{12+} m/z = 1020.0$, $[M+11H]^{11+} m/z = 1112.8$, $[M+10H]^{10+} m/z = 1223.9$, $[M+9H]^{9+} m/z = 1359.8$, $[M+8H]^{8+} m/z = 1529.5$, $[M+7H]^{7+} m/z = 1747.5$.

L-Src(145-251)^{TMR} (**L-5b**). By the identical procedure described for the synthesis of peptide **L-5a**, peptide **L-4b** was synthesized (0.45 mg, 13% yield). MS(ESI): Calcd for $C_{569}H_{873}N_{158}O_{168}S_3$: 12711.36 (MH⁺); observed: [M+15H]¹⁵⁺ m/z = 848.5, [M+14H]¹⁴⁺ m/z = 909.1, [M+13H]¹³⁺ m/z = 978.9, [M+12H]¹²⁺ m/z = 1060.5, [M+11H]¹¹⁺ m/z = 1156.7, [M+10H]¹⁰⁺ m/z = 1272.3, [M+9H]⁹⁺ m/z = 1413.3, [M+8H]⁸⁺ m/z = 1590.2, [M+7H]⁷⁺ m/z = 1760.0.

D-Src(145-251)^{TMR} (**D-5b**). By the identical procedure described for the synthesis of peptide L-5a, peptide **D-5b** was synthesized (0.25 mg, 14% yield). MS(ESI): Calcd for C₅₆₉H₈₇₃N₁₅₈O₁₆₈S₃: 12711.36 (MH⁺); observed: $[M+15H]^{15+} m/z = 848.6$, $[M+14H]^{14+} m/z = 909.0$, $[M+13H]^{13+} m/z = 978.9$, $[M+12H]^{12+} m/z = 1060.4$, $[M+11H]^{11+} m/z = 1156.7$, $[M+10H]^{10+} m/z = 1272.2$, $[M+9H]^{9+} m/z = 1413.4$, $[M+8H]^{8+} m/z = 1588.1$. **D-hmT pY324 (D-6)**: By the identical procedure described for the synthesis of peptide **L-6**, peptide **D-6** was synthesized (14.5 mg, 30% yield). MS(ESI): Calcd for C₆₆H₉₉N₁₃O₂₃P: 1473.56 (MH⁺); observed: $[M+H]^+ m/z = 1473.0$.

L-hmT pY324^{biotin} (L-7, biotin-Acp-EPQpYEEIPIYL-NH₂): By the identical procedure described for the synthesis of peptide L-6, peptide L-7 was synthesized (38 mg, 35% yield). D-Biotin was coupled with HBTU (73.3 mg, 0.3 mmol), HOBt·H₂O (45.9 mg, 0.3 mmol) and (^{*i*}Pr)₂NEt (0.104 mL, 0.6 mmol) in DMF. MS(ESI): Calcd for C₈₂H₁₂₄N₁₆O₂₆PS: 1813.01 (MH⁺); observed: [M+H]⁺ m/z = 1812.7.

D-hmT pY324^{biotin} (**D-7**): By the identical procedure described for the synthesis of peptide L-7, peptide **D-7** was synthesized using D-biotin (24.2 mg, 44% yield). MS(ESI): Calcd for $C_{82}H_{124}N_{16}O_{26}PS$: 1813.01 (MH⁺); observed: [M+H]⁺ m/z = 1813.0.

L-FMT1^{FAM} (L-8, 5-FAM-GpYEEIA-NH₂): By the identical procedure described for the synthesis of peptide L-6, peptide L-8 was synthesized (7.9 mg, 23% yield). Labeling of 5-carboxyfluorecein (33.9 mg, 0.090 mmol) was carried out with DIC (0.0139 mL, 0.090 mmol) and HOBt·H₂O (13.8 mg, 0.090 mmol) in DMF. MS(MALDI-TOF): Calcd for C₅₁H₅₇N₇O₂₀P: 1119.02 (MH⁺); observed: $[M+H]^+ m/z = 1118.7$, $[M+Na]^+ m/z = 1141.7$, $[M+K]^+ m/z = 1156.6$.

D-FMT1^{FAM} (**D-8**): By the identical procedure described for the synthesis of peptide L-8, peptide **D-8** was synthesized (11.6 mg, 33% yield). MS(MALDI-TOF): Calcd for $C_{51}H_{57}N_7O_{20}P$: 1119.02 (MH⁺); observed: [M+H]⁺ m/z = 1118.7, [M+Na]⁺ m/z = 1141.7, [M+K]⁺ m/z = 1156.7.

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 30-45% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 15 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 5198.83 (MH⁺); Major observed ions: 867.2 (+6), 1040.7 (+5), 1300.4 (+4), 1733.3 (+3).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 30-45% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 15 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 5198.83 (MH⁺); Major observed ions: 867.4 (+6), 1040.7 (+5), 1300.4 (+4), 1733.4 (+3).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 30-45% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 15 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 5682.36 (MH⁺); Major observed ions: 812.7 (+7), 948.0 (+6), 1137.4 (+5), 1421.3 (+4).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 30-45% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 15 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 5682.36 (MH⁺); Major observed ions: 812.6 (+7), 947.9 (+6), 1137.3 (+5), 1421.4 (+4).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 30-45% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 15 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 7198.22 (MH⁺); Major observed ions: 900.7 (+8), 1029.1 (+7), 1200.4 (+6), 1440.4 (+5), 1800.0 (+4).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 30-45% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 15 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 7198.22 (MH⁺); Major observed ions: 900.7 (+8), 1029.1 (+7), 1200.1 (+6), 1440.2 (+5), 1799.7 (+4).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 30-45% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 15 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 12227.84 (MH⁺); Major observed ions: 813.9 (+15), 874.4 (+14), 941.7 (+13), 1020.1 (+12), 1112.7 (+11), 1223.9 (+10), 1359.7 (+9), 1529.8 (+8), 1747.8 (+7).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 30-45% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 15 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 12227.84 (MH⁺); Major observed ions: 813.9 (+15), 874.5 (+14), 941.6 (+13), 1020.0 (+12), 1112.8 (+11), 1223.9 (+10), 1359.8 (+9), 1529.5 (+8), 1747.5 (+7).

Analytical HPLC trace and ESI-MS of synthetic Src SH2 domain proteins. (*A*) Analytical HPLC of L-Src(145-187) (L-5a, red), synthetic D-Src(145-187) (D-5a, blue), and a mixture of L-5a and D-5a (1:1) (purple) with detection at UV 220 nm. (*B* and *C*) ESI-MS analysis of L-Src(145-187) (L-5a) and D-Src(145-187) (D-5a), respectively.

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 30-45% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 15 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 12711.36 (MH⁺); Major observed ions: 848.5 (+15), 909.1 (+14), 978.9 (+13), 1060.5 (+12), 1156.7 (+11), 1272.3 (+10), 1413.3 (+9), 1590.2 (+8), 1760.0 (+7).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 30-45% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 15 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 12711.36 (MH⁺); Major observed ions: 848.6 (+15), 909.0 (+14), 978.9 (+13), 1060.4 (+12), 1156.7 (+11), 1272.2 (+10), 1413.4 (+9), 1588.1 (+8).

L-hmT pY324 (L-6)

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 preparative column (Nacalai Tesque, 4.6×250 mm), linear gradient of 20-40% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 20 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 1473.56 (MH⁺); Major observed ions: 1473.0 (+H).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 20-40% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 20 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 1473.56 (MH⁺); Major observed ions: 1473.0 (+H).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 20-50% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 30 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 1813.01 (MH⁺); Major observed ions: 1812.7 (+H).

Analytical HPLC trace of the purified product: Cosmosil 5C18-AR300 column (Nacalai Tesque, 4.6×250 mm), linear gradient of 20-50% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 30 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 1813.01 (MH⁺); Major observed ions: 1813.0 (+H).

L-FMT1FAM (L-8)

Analytical HPLC trace of the purified product: Cosmosil 5C18-ARII column (Nacalai Tesque, 4.6 \times 250 mm), linear gradient of 20-40% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 20 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 1119.02 (MH⁺); Major observed ions: 1118.7 (+H), 1141.7 (+Na), 1156.6 (+K).

D-FMT1^{FAM} (**D-8**)

Analytical HPLC trace of the purified product: Cosmosil 5C18-ARII column (Nacalai Tesque, 4.6 \times 250 mm), linear gradient of 20-40% CH₃CN containing 0.1% TFA at a flow rate of 1 mL min⁻¹ over 20 min.

Mass spec analysis of the purified product: Expected mass based on sequence: 1119.02 (MH⁺); Major observed ions: 1118.7 (+H), 1141.7 (+Na), 1156.7 (+K).