Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

S24

Electronic Supplementary Information

Synthesis, characterization and catalytic activity of rareearth metal amides incorporating cyclohexyl bridged bis(βdiketiminato) ligands

Hui Miao,^{a,b} Shaowu Wang,^{*,a,c} Xiancui Zhu,^{*,a} Shuangliu Zhou,^a Yun Wei,^a Qingbing Yuan^a and Xiaolong Mu^a

^aLaboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China. ^bSchool of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, Anhui 236037, P. R. China. ^cState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

E-mail: <u>swwang@ahnu.edu.cn</u>; zxc0805@ahnu.edu.cn

I.	X-ray crystallographic analysis of complexes 1a-c ·····S2
II.	General procedure for hydrophosphination of β -nitroalkene and α , β -unsaturated
	carbonyl derivatives ······S4
III.	Data of ¹ H NMR and ¹³ C NMR Spectra for compounds 4a-n ······S4
IV.	Copies of ¹ H NMR and ¹³ C NMR Spectra for complexes 1d , 2e and compounds
	4a-n
V.	Crystallographic Data for Complexes 1a-d

I. X-ray crystallographic analysis of complexes 1a-c

The single crystal X-ray diffraction data for complexes **1a-1c** were collected on a CCD area diffractometer with graphite monchromated *Mo* K α radiation ($\lambda = 0.71073$ Å);

temperature 273(2) K. Saint program and SADABS program carried out the data

integration. The structures were solved by a direct method and refined on F^2 using SHELXTL suite of program. All non-hydrogen atoms were anisotropically refined by full-matrix least squares methods. All hydrogen atoms were geometrically generated and isotropically refined using a riding model. The crystal structures of **1a-1c** are given in Figure S1-S3.

Figure S1. Molecular structure of complex **1a**. Hydrogen atoms were omitted for clarity.

Figure S2. Molecular structure of complex 1b. Hydrogen atoms were omitted for

Figure S3. Molecular structure of complex 1c. Hydrogen atoms were omitted for clarity.

II. General procedure for hydrophosphination of β -nitroalkene and α , β -unsaturated carbonyl derivatives (4a as an example).

A 30.0 mL Schlenk tube under dried argon was charged with complex 1d (11.8 mg, 0.015 mmol), diphenyphosphine oxide (0.101 g, 0.5 mmol), and 5.0 mL of toluene, and then β -nitrostyrene (0.075 g, 0.5 mmol) was added to the mixture. The mixture was stirred at room temperature for 6 hours. After the reaction was completed, the reaction mixture was hydrolyzed by water, extracted with ethyl ether, dried over anhydrous sodium sulfate, and then filtered. After the solvent was removed under reduced pressure, the final products were further purified by recrystallization from ethyl acetate or column chromatography. Compound 4a was isolated as white solid (0.167 g, 95%).

III. Data of ¹H NMR and ¹³C NMR for compounds 4a-n

compound 4a

¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 8.00-7.94 (m, 2H), 7.62-7.59 (m, 3H), 7.45-7.36 (m, 3H), 7.28-7.19 (m, 7H), 5.10-5.05 (m, 1H, CHP), 4.78-4.72 (m, 1H, CH₂CH), 4.44-4.39 (m, 1H, CH₂CH); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 132.8, 132.1, 131.7, 131.3, 131.1, 131.0, 130.7, 129.5, 129.3, 128.8, 128.4, 128.3, 75.8 75.7, 46.3, 45.4.

compound 4b

¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ 8.00-7.94(m, 2H), 7.62-7.59(m, 2H), 7.50-7.38(m, 3H), 7.31-7.26(m, 3H), 7.18-7.15(m, 2H), 7.03-7.00(m, 2H), 5.12-5.02(m, 1H, CH₂), 4.76-4.70(m, 1H, CHP), 4.43-4.34(dt, 1H, CH₂), 2.25(m 3H, CH₃). ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 132.8, 131.7, 131.2, 130.1, 129.8, 129.7, 129.6, 128.7, 128.2, 127.5, 127.4, 127.3, 76.0, 75.9, 45.9, 45.0, 21.1. compound **4**c

¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 8.05-7.98 (m, 2H), 7.68-7.65 (m, 3H), 7.54-7.47 (m, 3H), 7.39-7.25 (m, 5H), 5.12-5.05 (m, 1H, CHP), 4.80-4.74 (m, 1H, CH₂CH), 4.47-4.42 (m, 1H, CH₂CH); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 131.9, 131.6, 131.3, 130.0, 129.9, 129.7, 129.6, 128.5, 128.0, 127.8, 127.6, 127.4, 74.6, 44.6, 43.8.

compound 4d

^{CI} ¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 7.94-7.79 (m, 2H), 7.76-7.73 (m, 1H), 7.59-7.54 (m, 3H), 7.40-7.33 (m, 3H), 7.24-7.18 (m, 3H), 7.11-7.09 (m, 1H), 5.12-4.94(m, 2H), 4.70-4.62(m, 1H, CH₂CH). ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 135.6, 135.5, 134.7, 131.2, 131.1, 130.9, 130.7, 130.4, 129.9, 129.6, 129.5, 129.4, 129.0, 128.8, 128.7, 128.4, 128.3, 127.9, 75.3, 40.9, 40.1. compound **4**e

^{MeO} ¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 7.93-7.87 (m, 2H), 7.55-7.52(m, 2H), 7.40-7.35 (m, 3H), 7.25-7.12 (m, 5H), 6.69-6.66 (m, 2H), 5.01-4.94 (m, 1H, CHP), 4.66-4.62 (m, 1H, CH₂CH), 4.33-4.26 (m, 1H, CH₂CH), 3.67 (s, 3H, CH₃O); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 159.9, 131.7, 131.1, 130.2, 130.0, 128.4, 128.2, 127.4, 127.3, 122.6, 121.0, 111.2, 110.1, 74.9, 55.6, 45.7, 45.2. compound **4f**

MeO ¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 7.94-7.88 (m, 2H), 7.56-7.54(m, 2H), 7.40-7.35 (m, 3H), 7.26-7.19 (m, 3H), 6.72-6.65 (m, 3H), 5.05-4.95 (m, 1H, CHP), 4.68-4.64 (m, 1H, CH₂CH), 4.32-4.25 (m, 1H, CH₂CH), 3.74 (s, 3H, CH₃O), 3.66 (s, 3H, CH₃O); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 147.9, 131.7, 131.1, 130.1, 130.0, 129.8, 128.4, 128.2, 127.4, 127.3, 122.6, 121.0, 111.2, 111.2, 110.1, 74.9, 54.8, 54.7, 44.9, 44.0.

compound 4g

^{Br} ¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 7.90-7.87 (m, 2H), 7.56-7.51 (m, 3H), 7.43-7.28 (m, 3H), 7.26-7.19 (m, 4H), 7.10-7.09 (m, 2H), 5.02-4.92 (m, 1H, CHP), 4.67-4.60 (m, 1H, CH₂CH), 4.34-4.26 (m, 1H, CH₂CH); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 132.9, 132.4, 132.0, 131.2, 131.1, 130.9, 130.4, 130.0, 129.4, 128.6, 128.5, 122.6, 75.6, 45.7, 44.9. compound **4h**

NO₂

¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 7.93-7.88 (m, 2H), 7.52-7.40 (m, 5H), 7.38-7.11 (m, 8H), 4.07-3.99 (m, 1H, CHP), 3.91-3.84 (m, 2H, CH₂CH₃), 3.09-3.00 (m, 1H, CH₂CH), 2.89-2.83 (m, 1H, CH₂CH), 0.99 (m, 3H, CH₃CH₂); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 170.2, 134.0, 131.0, 130.4, 130.1, 130.0, 129.6, 128.7, 127.9, 127.8, 127.2, 127.1, 127.0, 126.2, 59.8, 41.9 (d, *J*_{C-P} = 67.7 Hz), 33.9, 12.9.

compound 4j

Ph Ph

NH'Pr ¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 7.69-7.63 (m, 4H), 7.47-7.39 (m, 6H), 6.35 (m, 1H, NH), 3.88 (m, 1H, CHCH₃), 2.60-2.52 (m, 2H, CH₂CO), 2.45-2.38 (m, 2H, CH₂PO), 1.06-1.02 (m, 6H, CH₃CH); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 170.4, 133.0, 132.0, 131.9, 131.7, 130.7, 130.6, 128.8, 128.7, 41.4, 28.0, 25.2 (d, J_{C-P} = 72.8 Hz), 22.6.

compound 4k

¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 7.91 (m, 2H), 7.69-7.66 (m, 3H), 7.45-7.04 (m, 14H), 4.42-4.37 (m, 1H, CHP), 3.97-3.88 (m, 1H, CH₂CH), 3.32-3.22 (m, 1H, CH₂CH), 2.27 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 195.2 (d, J_{C-P} = 10.4 Hz), 143.2, 134.9, 132.9, 131.6, 131.0, 130.4, 130.2, 130.0, 129.9, 129.6, 128.8, 128.2, 128.0, 127.8, 127.2, 127.0, 126.0, 40.0 (d, J_{C-P} = 68.6 Hz), 37.8, 20.6.

compound 41

¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 8.56 (s, 1H), 8.27 (m, 1H), 8.07 (m, 1H), 7.91 (m, 2H), 7.54-7.19 (m, 11H), 7.12-7.07 (m, 3H), 4.37 (m, 1H, CHP), 3.94-3.87 (m, 1H, CH₂CH), 3.43-3.38 (m, 1H, CH₂CH); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 194.9 (d, J_{C-P} = 10.5 Hz), 148.4, 135.6, 133.6, 131.6, 131.4, 131.3, 131.0, 130.9, 129.9, 129.8, 129.7, 129.1, 129.0, 128.5, 128.2, 128.1, 127.5, 127.3, 123.0, 41.3 (d, J_{C-P} = 68.2 Hz), 39.4.

 $\text{compound} \ 4m$

CI¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 7.93-7.87 (m, 2H), 7.71-7.69 (m, 2H), 7.46-7.18 (m, 12H), 7.08-7.05 (m, 3H), 4.39-4.34 (m, 1H, CHP),

3.95-3.84 (m, 1H, CH₂CH), 3.33-3.23 (m, 1H, CH₂CH); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 194.6 (d, *J*_{C-P} = 12.3 Hz), 138.8, 134.7, 134.0, 131.1, 130.5, 130.3, 130.2, 130.0, 129.9, 129.6, 128.8, 128.7, 128.5, 128.0, 127.8, 127.3, 127.1, 127.0, 40.0 (d, *J*_{C-P} = 68.6 Hz), 37.9.

compound 4n

CI⁻¹H NMR (300 MHz, CDCl₃, 25 °C, ppm): δ = 7.92-7.87 (m, 2H), 7.78-7.65 (m, 2H), 7.65-7.22 (m, 12H), 7.06-7.03 (m, 3H), 4.39-4.34 (m, 1H, CHP), 3.95-3.84 (m, 1H, CH₂CH), 3.32-3.23 (m, 1H, CH₂CH); ¹³C NMR (75 MHz, CDCl₃, 25 °C, ppm): δ = 195.4 (d, *J*_{C-P} = 13.3 Hz), 132.5, 131.1, 130.6, 130.2, 130.1, 130.0, 129.9, 129.8, 128.1, 127.9, 127.8, 127.6, 127.5, 127.3, 127.2, 127.1, 39.4 (d, *J*_{C-P} = 68.5 Hz), 37.9.

IV. Copies of ¹H NMR and ¹³C NMR for complexes 1d, 2e and compounds 4a-n

S9

225888 23 X8888

111 Ph O≈Ṕ–Ph _NO₂ 4g Br

S16

Ph O≈p∕−Ph *s*, *s* ∠NO₂ 4h

0.98

76.46 76.03 75.61 ~42.34 ~41.44 —33.86 -12.90

----0.01

Crustal data	1a	1b	1c	1d
Empirica formula	$C_{42}H_{68}N_5NdSi_2$	$C_{42}H_{68}DyN_5Si_2$	$C_{42}H_{68}N_5Si_2Yb$	$C_{42}H_{68}N_5Si_2Y$
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	P212121	P2 ₁ 2 ₁ 2 ₁	P2 ₁ 2 ₁ 2 ₁	$P2_{1}2_{1}2_{1}$
a (Å)	12.4507(11)	12.7402(9)	12.5546(11)	12.7235(11)
b (Å)	16.3478(15)	15.6814(11)	15.7504(14)	15.6788(14)
c (Å)	22.550(2)	22.7852(16)	22.813(2)	22.7752(19)
α (°)	90	90	90	90
β (°)	90	90	90	90
γ (°)	90	90	90	90
V (Å ³)	4589.9(7)	4552.1(6)	4511.1(7)	4543.4(7)
T (K)	293(2)	293(2)	293(2)	293(2)
D_{calc} (g cm ⁻³)	1.221	1.257	1.284	1.152
Ζ	4	4	4	4
F(0 0 0)	1772	1796	1812	1688
Reflections collected	39779	39442	38677	32120
Number of unique reflections	10517(0.0299)	10562(0.0280)	10314(0.0331)	7947(0.0572)
$(R_{\rm int})$				
Number of parameters	465	465	465	465
λ (Mo K α radiation) (Å)	0.71073	0.71073	0.71073	0.71073
μ (mm ⁻¹)	1.215	1.726	2.159	1.368
θ Range (°)	1.54 - 27.57	1.58 - 27.65	1.57 - 27.49	1.58 - 25.00
Goodness-of-fit (GOF)	1.049	1.023	1.030	1.010
Final R indices [I> 2σ (I)]; R ₁ ,	0.0010.0.0740	0.0070 0.0007	0.0445 0.1015	0.040(.0.0000
wR ₂	0.0318, 0.0748	0.0279, 0.0637	0.0445, 0.1215	0.0426, 0.0899
R indices (all data); R ₁ , wR ₂	0.0393, 0.0791	0.0363, 0.0677	0.0516, 0.1273	0.0774, 0.1031
Largest difference in peak and hole (e $Å^{-3}$)	0.284 and -1.056	0.580 and -0.479	0.353 and -1.003	0.212 and -0.340

V. Crystallographic Data for Complexes 1a-d