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S 1. COMPUTATIONAL DETAILS

The exchange correlation potential is treated by the generalized gradient approximation (GGA) as proposed by Perdew-Burke-

Ernzerhof 1 in both the computational methods. We have used the simplified, rotationally invariant approach introduced by 

Dudarev et al. 2 to take into account the strong on-site Coulomb repulsion amongst the localized A 4f and Ru 4d electrons. The 

value of U and J used for A 4f and Ru 4d electrons are given in Table S1. Using the experimental structural parameters obtained 

from the Rietveld refinement of the XRD data the crystal structures have been optimized so as to minimise the forces acting on 

each atoms. The optimized atomic coordinates are used for further calculations and are given in Table S2. In this approach the 

valence orbital are expanded as plane waves and the interactions between the core and the valence electrons are described by 

pseudo potentials. The optimization of the atomic geometry is performed via conjugate-gradient minimization 3 of the total 

energy using Hellmann-Feynman forces on the atoms and the stresses in the unit cell. During the simulations, atomic coordinates 

are allowed to relax for different volumes of the unit cell. These parameters are changed iteratively so that the sum of the lattice 

energy and the electronic free energy are converged to a minimum value. The exact ground state for each set of atomic positions 

are calculated and the electronic free energy is taken as the quantity to be minimized. Convergence minimum with respect to 

the atomic shifts are assumed to be attained when the energy difference between the two successive iterations is less than 10-6 

eV per unit cell and the forces acting on the atoms are less than 1 meV/Å. The plane wave cut-off energy of 500 eV and 6×6×4 k 
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mesh are used to achieve reasonable convergence. The Fermi surface was treated by the Methfessel-Paxton 4 method with a 

smearing of 0.5 eV. The sampling integration over the Brillouin zone is employed by using the Monkhorst-Pack method 5. In the 

electronic structure calculations using spin polarized full potential linearized augmented plane wave (FP-LAPW) method as 

implemented in WIEN 2k, the multi-pole expansion of the crystal potential and the electron density within the muffin tin (MT) 

spheres are cut at l = 10. Muffin-tin radii (RMT) for Pr, Nd, Sm, Li, Ru and O are listed in Table S3. Non-spherical contributions to 

the charge density and potential within the MT spheres are considered up to lmax = 6. The cut-off parameter RMT×Kmax = 7 has 

been chosen, which controls the convergence of the basis set (Kmax is the plane-wave cutoff). The convergence criterion is set to 

be 10-4 Ry. The core states are treated relativistically, whereas the semi core states are treated semi-relativistically i.e. ignoring 

the spin-orbit (SO) coupling. The energy cut-off between the core and the valence states is set at —8.0 Ry.

Table S1. Value of U and J parameters given in eV applied to A—f and Ru—d orbitals within the GGA+U scheme.

Atom U J Ref.

Pr 6.5 1.0

Nd 7.2 1.0                                 

Sm 7.4 1.0

 (6)

 (6)

 (6)

Ru 3.0 0.7  (7)

Table S2.  Optimized atomic coordinates for A2LiRuO6 obtained using VASP.           

PLR

a (Å) = 5.50,  b (Å)= 5.86,  c (Å)=7.82, β (ο) = 90.48

Atom x y z

Pr 0.016 0.931 0.749

Pr 0.984 0.069 0.251

Pr 0.484 0.431 0.751

Pr 0.516 0.569 0.249

Li 0.5 0 0

Li 0 0.5 0.5

Ru 0.5 0 0.5

Ru 0 0.5 0

O1 0.293 0.686 0.953
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O1 0.707 0.314 0.047

O1 0.207 0.186 0.547

O1 0.793 0.814 0.453

O2 0.182 0.215 0.947

O2 0.818 0.785 0.053

O2 0.318 0.715 0.553

O2 0.682 0.285 0.447

O3 0.904 0.531 0.757

O3 0.096 0.469 0.243

O3 0.596 0.031 0.743

O3 0.404 0.969 0.257

NLR

a (Å) = 5.492,  b (Å)= 5.82,  c (Å)=7.79, β (ο) = 90.45

Nd 0.015 0.932 0.749

Nd 0.985 0.068 0.251

Nd 0.485 0.432 0.751

Nd 0.515 0.568 0.249

Li 0.5 0 0

Li 0 0.5 0.5

Ru 0.5 0 0.5

Ru 0 0.5 0

O1 0.294 0.685 0.953

O1 0.706 0.315 0.047

O1 0.206 0.185 0.547

O1 0.794 0.815 0.453

O2 0.182 0.212 0.947

O2 0.818 0.788 0.053

O2 0.318 0.712 0.552

O2 0.682 0.288 0.447

O3 0.903 0.531 0.756

O3 0.097 0.469 0.244
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O3 0.597 0.031 0.744

O3 0.403 0.969 0.256

SLR

a (Å) = 5.374,  b (Å)= 5.721,  c (Å)=7.63,  β (ο) =90.56

Sm 0.016 0.929 0.749

Sm 0.984 0.07 0.25

Sm 0.484 0.429 0.751

Sm 0.516 0.570 0.249

Li 0.5 0 0

Li 0 0.5 0.5

Ru 0.5 0 0.5

Ru 0 0.5 0

O1 0.296 0.690 0.952

O1 0.704 0.309 0.048

O1 0.204 0.190 0.548

O1 0.796 0.809 0.452

O2 0.175 0.208 0.948

O2 0.825 0.792 0.052

O2 0.325 0.708 0.552

O2 0.675 0.292 0.448

O3 0.898 0.535 0.759

O3 0.102 0.465 0.241

O3 0.602 0.035 0.741

O3 0.398 0.965 0.259
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Table S3. Muffin tin radius (RMT) of A2LiRuO6.

Compounds                RMT (a.u.)

PLR Pr = 2.28, Li = 1.73, Ru = 1.96, O = 1.69          

NLR Nd = 2.42, Li = 1.72, Ru = 1.96, O = 1.69        

SLR Sm = 2.39, Li = 1.74, Ru = 1.95, O = 1.68         

Table S4. Structural parameters for A2LiRuO6 as obtained from the Rietveld analysis of XRD data.

   PLR    NLR   SLR

a (Å) 5.4623 (1) 5.4374(5) 5.3692 (1)

b (Å) 5.6873 (1) 5.7170(5) 5.7156 (1)

c (Å) 7.7329 (2) 7.7075(5) 7.6247 (2)

β (ο) 90.27  90.34 90.53  

Pr (4e)

x 0.0105(5) -0.0003(4) 0.0147(5)

y 0.9404(2) 0.9366(7) 0.9291(3)

z 0.7488(3) 0.74477(8) 0.7493(3)

Li (2d)

(0.5,0.0,0.0)

Ru (2c)

(0.5,0.0,0.5)

OI (4e)

x 0.304(3) 0.273(9) 0.310(3)

y 0.712(3) 0.671(9) 0.698(3)

z 0.963(7) 0.72(2) 0.956(2)

OII (4e)

x 0.201(3) 0.214(8) 0.187(3)

y 0.193(3) 0.192(9) 0.192(3)

z 0.957(3)   0.98(1) 0.957(2)

OIII (4e)

x 0.909(3) 0.896(8) 0.904(3)
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Table S5. Bond lengths and bond angles for A2LiRuO6. 

y 0.524(2) 0.507(7) 0.524(3)

z 0.738(2) 0.783(5) 0.741(2)

Rp 13.8 10.1 12.3

Rwp 17.9 12.9 17.4

Rexp 10.68 7.95 12.66

χ2 2.82 2.62 1.9

Atom Coordinat
i
on

   Bond    
   lengths    
     (Å)

    Exp.
     

   Theory    Bond    
   angle

        (ο)

    Exp.
     

   Theory

PLR

Pr 8 Ru‒OI(×2) 2.08 1.98 <Ru‒OI‒Li> 153.57 148.42

Li 6 Ru‒O2(×2) 2.09 1.99 <Ru‒O2‒Li> 149.89 147.54

Ru 6 Ru‒O3(×2) 2.08 1.98 <Ru‒O3‒Li> 150.06 148.09

O1 5 Li‒OI(×2) 1.97 2.19

O2 5 Li‒O2(×2) 1.99 2.19

O3 4 Li‒O3(×2) 1.92 2.09

NLR

Nd 8 Ru‒OI(×2) 1.99 1.98 <Ru‒OI‒Li> 161.50 148.09

Li 6 Ru‒O2(×2) 2.26 2.0 <Ru‒O2‒Li> 139.9 147.09

Ru 6 Ru‒O3(×2) 1.98 1.98 <Ru‒O3‒Li> 148.65 147.77

O1 5 Li‒OI(×2) 1.98 2.18

O2 5 Li‒O2(×2) 1.97 2.17

O3 4 Li‒O3(×2) 2.05 2.08

SLR

Sm 8 Ru‒OI(×2) 2.05 1.96 <Ru‒OI‒Li> 148.70 148.34

Li 6 Ru‒O2(×2) 2.06 1.96 <Ru‒O2‒Li> 147.76 145.71

Ru 6 Ru‒O3(×2) 2.04 1.92 <Ru‒O3‒Li>  148.71 145.94

O1 5 Li‒OI(×2) 2.02 2.11
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(a)

   

(b)

   

(c)

Fig. S1 Schematic presentation of the room temperature crystal structure of (a) PLR (b) NLR and (c) SLR. The blue and green 

colored octahedra denote the LiO6 octahedra and RuO6 octahedra respectively. The Pr atoms (brown spheres), Nd atoms (yellow 

spheres) and Sm atoms (pink spheres) sit in between the LiO6 and RuO6 octahedra. The Li atoms (blue spheres) and the Ru atoms 

(green spheres) are located at the centers of the LiO6 and RuO6 octahedra. The image was generated using VESTA software 8.

S 2. OPTICAL PROPERTIES

Optical properties of a solid state material indicate the interaction of the incident photon with the atoms which can be described 

by the dielectric function, . The dielectric function of a material depending on the frequency has some important ( )  ( ) 

role in determining the physical properties of solids. It has two parts real and imaginary 9.                           

                                    ( ) ( )1 2i     

O2 5 Li‒O2(×2) 2.03 2.14

O3 4 Li‒O3(×2) 1.92 2.06
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The imaginary part of the complex dielectric function can be written as 

               

2 24
| | ' ' | |2 2 2 '

eij kn p kn kn p kni jnnVm


    


    

      
(1 ) ( )' 'f f E Ekn kn kn kn     h

where e is the charge and m is the mass of the electron, the symbols  and  represent the angular frequency of  V

electromagnetic radiation striking the crystal, and unit

cell volume respectively.  represents the crystal wave function with crystal momentum k, and  spin stands for the eigen | kn  

value 
 
that corresponds to the momentum operator . The Fermi distribution function  identifies the transition Ekn p j ( )fkn

from the occupied to the unoccupied state and  shows the total energy conservation. The real part of the ( )'E Ekn kn   h

dielectric function  can then be derived from the imaginary part using the Kramers-Kronig relation,( )1 

                   
( )2 2( ) 1 01 2 2P d

  
  

  

    
 

where indicates the principal value of the integral. The knowledge of both the  and can be used to calculate P ( )1  ( )2 

some important optical parameters such as refractive index, reflectivity and absorption coefficients. We have calculated the 

dielectric function for the frequencies well above those of the phonons and therefore we have considered only the electronic 

excitations. Generally, in the condensed matter systems, there are two contributions to , namely intra-band and inter-( ) 

band transitions. The contribution from the intra-band transitions is important only for metals. The inter-band transitions can 

further be splitted into the direct and indirect transitions. The latter involve scattering of phonons and are neglected here 

because of their small contribution to in comparison to the direct transitions 10. In order to compute the optical properties ( ) 

the Brillouin zone integration is performed with a dense mesh of uniformly distributed 24×17×24 k-mesh in the Brillouin zone, 

which corresponds to 1296 k points in the irreducible Brillouin zone.

Table S6. Optical constants of A2LiRuO6 compounds.
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Fig. S2 Calculated refractive index (n) of (a) PLR, (b) NLR and (c) SLR.

S 3. Dielectric constant.

 For perovskite oxides, the major contribution to the dielectric response comes from its ionic part. The ionic response is 

dominated by the collective effect of infrared (IR) modes and the total static dielectric tensor is expressed as:                  

                           0 0,
     

 

is the optical dielectric tensor and  is the contribution to the dielectric constant of each individual phonon mode ν. The  0, 

second term is the ionic contribution to the dielectric tensor and is obtained from the following relation:              

                                                                        
24

0, 2
Z Ze

V

     


where V is the volume of the unit cell, ων is the eigen frequency of mode ν, and zν is defined as               

                                                                                                                 
, ,Z ai i

Z
i mi

 
 





here, mi is the mass of the ith atom, and  is the eigen vector of mode ν. ,ai 

   Dielectric constant   Refractive   

      index

Birefringence

Compounds (0)1
 || (0)1 (0)1 (0)n || (0)n (0)n

PLR 5.70 5.90 5.8 2.39 2.44 0.05

NLR 5.72 5.84 5.78 2.39 2.42 0.03

SLR 5.64 5.96 5.8 2.38 2.44 0.06
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The calculated electronic and ionic parts of static dielectric tensor for A2LiRuO6 are given below:

PLR =  ε static(electronic) =      εstatic(ionic) =  
6.8 0.0 0.0
0.0 6.98 0.0
0.0 0.0 6.8

 
 
 
 

21.3 0.0 0.0
0.0 19.7 0.0
0.0 0.0 16

 
 
 
 

NLR = ε static(electronic) =   εstatic(ionic) = 
5.85 0.0 0.0
0.0 6.1 0.0
0.0 0.0 5.95

 
 
 
 

30.2 0.0 0.0
0.0 20.0 0.0
0.0 0.0 19.49

 
 
 
 

SLR =  ε static(electronic) =        εstatic(ionic) = 
5.5 0.0 0.0
0.0 5.9 0.0
0.0 0.0 5.8

 
 
 
 

16.5 0.0 0.0
0.0 17.7 0.0
0.0 0.0 17

 
 
 
 
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