Electronic Supplementary Information

Perchlorate ions doped polypyrrole coated ZnS spheres composite as sodium-ion battery anode with superior rate capability enhanced by pseudocapacitance

Tianyi Hou,^a Guojie Tang,^a Xiaohong Sun,^{*a} Shu Cai,^a Chunming Zheng^{*b} and Wenbin Hu^a

^aSchool of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, PR China

^bState Key Laboratory of Hollow-fiber Membrane Materials and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, PR China

*corresponding authors:

E-mail: <u>sunxh@tju.edu.cn</u> (X. Sun), TEL/FAX: +86-22-85356661;

E-mail: zhengchunming@tjpu.edu.cn (C. Zheng), TEL/FAX: +86-22-83955661

Fig. S1. TGA curves for ZnS and ZnS@d-PPy from room temperature to 800°C measured with a heating rate of 10°C min⁻¹ under air atmosphere.

With temperature increasing, the final product of combustion is ZnO for both ZnS and ZnS@d-PPy. Two steps of weight losses in ZnS can be observed and assigned to the evaporation of absorbed water (before 300°C) and the oxidation of the ZnS (between 600 and 700°C). For ZnS@d-PPy, mass losses before 300°C are composed of the evaporation of adsorbed water for both ZnS and d-PPy.¹⁻³ The thermal decomposition of d-PPy can range in temperature from 300°C to 800°C and a rapid decrease in weight between 600 and 700°C is mainly assigned to the oxidation of ZnS in ZnS@d-PPy. Therefore, the content of d-PPy in ZnS@d-PPy can be obtained by weighting the final weights of ZnS and ZnS@d-PPy, which is about 8.9 wt%, as shown in Fig. S1.

Fig. S2. SEM image of ZnS@PPy.

Fig. S3. Nitrogen sorption isotherm of ZnS. Inset of it is the pore size distribution curve.

Nitrogen sorption analysis of ZnS spheres shows type-IV curve and the mesopores are generated from nanoparticles stacking. The pore size distribution center at about 2 nm measured using Barrett-Joyner-Halenda (BJH) model. The Brunauer-Emmett-Teller (BET) surface area is calculated to be 24 m² g⁻¹.

Fig. S4. Discharge/charge voltage profiles of ZnS, ZnS@PPy and ZnS@d-PPy between 0.01 and 3 V at 100 mA g^{-1} at the 30th cycle.

Fig. S5. Discharge/charge voltage profiles of ZnS@d-PPy between 0.01 and 3 V at different rates.

Table S1. Comparison of the results in this study with previous reported performance

Sample	Rate capability	Cycling performance	reference
ZnS-RGO	610 mAh g ⁻¹ at 100 mA g ⁻¹ ; 472 mAh g ⁻¹ at 250 mA g ⁻¹ ; 417 mAh g ⁻¹ at 500 mA g ⁻¹ ; 357 mAh g ⁻¹ at 1000 mA g ⁻¹ ;	481 mAh g ⁻¹ at 100 mA g ⁻¹ (50 cycles)	1
ZnS@NC	480 mAh g ⁻¹ at 100 mA g ⁻¹ ; 450 mAh g ⁻¹ at 200 mA g ⁻¹ ; 410 mAh g ⁻¹ at 500 mA g ⁻¹ ; 360 mAh g ⁻¹ at 1000 mA g ⁻¹ ;	460 mAh g ⁻¹ at 200 mA g ⁻¹ (80 cycles)	2
ZnS	~850 mAh g ⁻¹ at 20 mA g ⁻¹ ; ~670 mAh g ⁻¹ at 40 mA g ⁻¹ ; ~600 mAh g ⁻¹ at 80 mA g ⁻¹ ; ~560 mAh g ⁻¹ at 160 mA g ⁻¹ ; ~500 mAh g ⁻¹ at 320 mA g ⁻¹ ; ~460 mAh g ⁻¹ at 640 mA g ⁻¹ ;	465 mAh g ⁻¹ at 320 mA g ⁻¹ (100 cycles)	4
ZnS@d-PPy	465 mAh g ⁻¹ at 100 mA g ⁻¹ ; 441 mAh g ⁻¹ at 200 mA g ⁻¹ ; 355 mAh g ⁻¹ at 500 mA g ⁻¹ ; 302 mAh g ⁻¹ at 1000 mA g ⁻¹ ; 249 mAh g ⁻¹ at 2000 mA g ⁻¹ ; 203 mAh g ⁻¹ at 4000 mA g ⁻¹ ;	419 mAh g ⁻¹ at 100 mA g ⁻¹ (30 cycles)	This work

of the ZnS-based SIB anodes.

References

- 1 J. Li, Y. Fu, X. Shi, Z. Xu and Z. Zhang, Chem. Eur. J., 2017, 23, 157-166.
- 2 W. Qin, D. Li, X. Zhang, D. Yan, B. Hu and L. Pan, *Electrochim. Acta*, 2016, 191, 435-443.
- J. Yuan, C. Chen, Y. Hao, X. Zhang, B. Zou, R. Agrawal, C. Wang, H. Yu, X. Zhu,
 Y. Yu, Z. Xiong, Y. Luo, H. Li and Y. Xie, *J. Alloys Compd.*, 2017, 691, 34-39.
- 4 D. Su, K. Kretschmer and G. Wang, Adv. Energy Mater., 2016, 6, 1501785.