An indolizine-rhodamine based FRET fluorescent sensor for high sensitive and selective detection of Hg²⁺ in living cells

Ruixue Ji, Aikun Liu, Shili Shen, Xiaoqun Cao, Fei Li, Yanqing Ge*

School of Chemistry and Pharmaceutical Engineering, Taishan Medical University, Taian, Shandong 271016, P. R. China

Corresponding Author: Xiaoqun Cao

E-mail address: geyanqing2016@126.com

Tel.: +86-538-6236195; Fax: +86-538-6229741

Table of Contents:

Fig. S1 Normalized emission spectra of donor and normalized absorption	spectra of
TMUHg-1 after the addition of Hg^{2+} (1 eq.).	S 3
Fig. S2 Changes in absorption spectra of TMUHg-2 (10 μ M) in C ₂ H ₅ OH	[/H ₂ O (2/8,
v/v, 0.01 M HEPES buffer, pH = 7.20) solution with various amounts of Hg	g^{2+} ions. S3
Fig. S3 Fluorescence intensity ratio changes (F_{584}/F_{434}) of TMUHg-2 (1	µM) upon
gradual addition of Hg ²⁺ in C ₂ H ₅ OH/H ₂ O	S 4
Fig. S4 Cytotoxicity assays of probe TMUHg-2 at different cond	centrations.
	S4
Fig. S5 ¹ H NMR spectrum of compound 1.	S 5
Fig. S6 ¹³ C NMR spectrum of compound 1.	S 5
Fig. S7 ¹ H NMR spectrum of compound 2 .	S6
Fig. S8 ¹³ C NMR spectrum of compound 2.	S6
Fig. S9 ¹ H NMR spectrum of compound 3.	S7
Fig. S10 ¹³ C NMR spectrum of compound 3 .	S 7
Fig. S11 ¹ H NMR spectrum of probe TMUHg-2.	S8
Fig. S12 ¹³ C NMR spectrum of probe TMUHg-2.	S8
Fig. S13 HRMS spectrum of probe TMUHg-2.	S9
Fig. S14 HRMS spectrum of probe TMUHg-2 in the presence of Hg ²⁺ .	S9
Fig. S15 Energy transfer efficiency of TMUHg-2	S10
Fig. S16 The IR spectroscopy of TMUHg-2 and TMUHg-2-Hg	S10

Fig. S1 Normalized emission spectra of donor 1 (black line) and normalized absorption spectra of TMUHg-2 (blue line) after the addition of Hg²⁺ (1 eq.). Condition: donor 1, 1 μ M; TMUHg-2, 1 μ M; C₂H₅OH/H₂O (2/8, v/v); λ_{ex} = 380 nm; slit = 15 nm/10 nm).

Fig. S2 Changes in absorption spectra of TMUHg-2 (10 μ M) in C₂H₅OH/H₂O (2/8, v/v, 0.01 M HEPES buffer, pH = 7.20) solution with various amounts of Hg²⁺ ions.

Fig. S3 Fluorescence intensity ratio changes (F_{584}/F_{434}) of TMUHg-2 (1 μ M) upon gradual addition of Hg²⁺ in C₂H₅OH/H₂O (2/8, v/v, 0.01 M HEPES buffer, pH = 7.20) solution (λ_{ex} = 380 nm, silt = 15 nm/10 nm).

Fig. S4 Cytotoxicity assays of probe **TMUHg-2** at different concentrations for Glioma cells.

Fig. S5 ¹H NMR spectrum of compound 1.

Fig. S6 ¹³C NMR spectrum of compound 1.

Fig. S7 ¹H NMR spectrum of compound 2.

Fig. S8 ¹³C NMR spectrum of compound **2**.

Fig. S9 ¹H NMR spectrum of compound 3.

Fig. S10 ¹³C NMR spectrum of compound 3.

Fig. S11 ¹H NMR spectrum of probe TMUHg-2

Fig. S12 ¹³C NMR spectrum of probe TMUHg-2

Fig. S14 HRMS spectrum of probe TMUHg-2

Fig. S15 The black line is the probe (1 μ M) and the red line is probe (1 μ M) after addition of Hg²⁺ (1 eq.) in C₂H₅OH/H₂O solution (2/8, v/v, 0.01 M HEPES buffer, pH = 7.20, λ_{ex} = 380 nm, silt = 15 nm/10 nm).

Energy transfer efficiency (probe 1) = $1-F_{DA}/F_D = 53.7$ %

Fig. S16 The IR spectroscopy of TMUHg-2 and TMUHg-2-Hg