Effect of Nb doping in WO₃/ZrO₂ catalysts on gas phase

dehydration of glycerol to form acrolein

Ku-Hsiang Sung and Soofin Cheng*

Department of Chemistry, National Taiwan University

Roosevelt Rd. Sec. 4, Taipei 106, Taiwan. Fax: 886-2-33668671; E-mail:

chem1031@ntu.edu.tw

Supporting Information

Fig. S1 (A) NH₃- and (B) CO₂-TPD thermograms of WO₃/ZrO₂ catalysts calcined at: (a) 400, (b) 450, (c) 500, (d) 600, (e) 700 and (f) 800°C.

Fig. S2 The SEM photographs of (A) WO₃/ZrO₂-450 (B) 1%NbWO_x/ZrO₂-450 and (C) 3%NbWO_x/ZrO₂-450.

Fig. S3 (A) NH₃- and (B) CO₂-TPD thermograms of (a) WO_3/ZrO_2 -450, and those doped with (b) 1% Nb₂O₅, (c) 3% Nb₂O₅, and (d) 5% Nb₂O₅.

Fig. S4 Thermogravimetric analysis of 3%NbWO_x/ZrO₂-450 under air after catalytic reaction.

Fig. S5 Evolution of (A) glycerol conversion and (B) selectivity to acrolein versus TOS at 290°C over fresh and regenerated 3%NbWO_x/ZrO₂-450 catalyst. 0.3 g catalyst, GHSV = 1117 h⁻¹, 60 mL/min N₂ flow rate.

Fig. S6 Correlations of (A) specific glycerol consumption rates (average in 3-12 h TOS), (B) acrolein yield, and (C) decay rate with acid (\blacksquare) and base (\oplus) densities on

 WO_3/ZrO_2 calcined at different temperatures and $WO_x/ZrO_2\text{-}450$ doped with 1-5% $Nb_2O_5.$