Electronic Supplementary Information

Palladium-Catalyzed Three-Component Tandem Reaction of Sulfonyl Hydrazones, Aryl Iodides and Allenes: Highly Stereoselective Synthesis of (Z)- α -Hydroxymethyl Allylic Sulfones

Yunlei Hou, Qi Shen, Liangyu Zhu, Yufei Han, Yanfang Zhao, Mingze Qin*, Ping Gong*[a]

Key Laboratory of Structure-based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China

Contents

1. General Information	S2
2. General Procedure and Product Characterization	S2
2.1 The Optimal Experimental Conditions	S2
2.2 Product Characterization	S2-7
3. The Structural Confirmation of the Representative Compoun	d 4aa S7-8
4. NMR Spectra of New Compounds	

1. General Information

Unless otherwise noted, all reagents and solvents were obtained from commercial sources and used without further purification. Solvents were dried using standard methods and distilled before use. Reactions were monitored by thin-layer chromatography (TLC) on silica plates (F-254) and visualized under UV light. Melting points were obtained on a Büchi Melting Point B-540 apparatus and were uncorrected. All ¹H NMR and ¹³C NMR spectra were recorded on Bruker ARX-400, 400 MHz spectrometers with TMS as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in hertz (Hz). HRMS analysis was performed on a Q-TOF mass analyzer using the ESI ionization method. Column chromatography was run on silica gel (200-300 mesh) from Qingdao Ocean Chemicals (Qingdao, Shandong, China).

2. General Procedure and Product Characterization

$- \underbrace{\bigcirc}_{0}^{O} \underbrace{\bigvee}_{0}^{N=} + \underbrace{\bigcirc}_{0H} + \underbrace{\bigcirc}_{0H} \underbrace{\bigoplus}_{0}^{[Pd(PPh_{3})_{4}] (5 \text{ mol}\%)}_{\text{bicxane, 80 °C, 8 h}} \underbrace{\bigcirc}_{0}^{Ph} \underbrace{\bigcirc}_{0}^{Ph} - \underbrace{\bigcirc}_{0}^{O} \underbrace{\bigcirc}_{0}^{Ph} - \underbrace{\bigcirc}_{0}^{O} \underbrace{\bigcirc}_{0}^{Ph} - \underbrace{\bigcirc}_{0}^{O} \underbrace{\bigcirc}_{0}^{Ph} - \underbrace{\bigcirc}_{0}^{O} \underbrace{\bigcirc}_{0}^{Ph} - \underbrace{\bigcirc}_{0}^{Ph} \underbrace{O}_{0}^{Ph} - \underbrace{O}$

2.1 The Optimal Experimental Conditions

Representative procedure for the synthesis of (Z)- α -hydroxymethyl allylic sulfone products: buta 2,3-dien-1-ol **3a** (28 mg, 0.39 mmol) and iodobenzene **2a** (81 mg, 0.39 mmol, 1.2 equiv.) were consecutively added to a sealed tube charged with a mixture of K₂CO₃ (136 mg, 0.99 mmol, 3.0 equiv.), [Pd(PPh₃)₄] (19 mg, 0.018 mmol, 5 mol%), and sulfonyl hydrazone **1a** (100 mg, 0.33 mmol, 1 equiv.) in dioxane (5 mL), under an atmosphere of nitrogen. The reaction mixture was stirred at 80 °C for 8 h and analyzed by TLC. After the reaction was complete, water (10 mL) was added, and the solution was extracted with dichloromethane. The organic phase was separated, washed with brine, dried (MgSO₄), filtered, and concentrated in vacuo to give the crude product, which was purified by column chromatography on silica gel with a mixture of ethyl acetate/petroleum (10:10, v/v) to afford the desired product **4aa**.

2.2 Product Characterization

(Z)-3-phenyl-4-tosylbut-2-en-1-ol (4aa)

Yield: 78% (77 mg), white solid, m.p.:61.1-62.5 °C.¹H NMR (400 MHz, DMSO- d_6) δ_H 7.63 (d, J = 8.2 Hz, 2H), 7.38-7.34 (m, 2H), 7.31-7.16 (m, 3H), 6.05 (t, J = 6.2 Hz, 1H), 4.76 (t, J = 5.4 Hz, 1H), 4.56 (s, 2H), 3.85 (t, J = 5.8 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 144.75, 140.95, 138.56, 136.37, 130.05, 128.58, 128.16, 127.57, 126.81, 58.75, 57.15, 21.51. HRMS (ESI-Q-TOF, m/z) calcd for C₁₇H₁₈O₃S [M + Na]⁺: 325.0836, found [M + Na]⁺: 325.0874.

(Z)-3-(p-tolyl)-4-tosylbut-2-en-1-ol (4ba)

Yield: 82% (85 mg), white solid, m.p.:78.3-79.1 °C. ¹H NMR (600 MHz, DMSO- d_6) δ_H 7.61 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 7.9 Hz, 2H), 6.01 (t, J = 6.2 Hz, 1H), 4.71 (t, J = 5.4 Hz, 1H), 4.51 (s, 2H), 3.82 (t, J = 5.8 Hz, 2H), 2.37 (s, 3H), 2.27 (s, 3H). ¹³C NMR (151 MHz, DMSO- d_6) δ_C 144.75, 138.05, 137.55, 136.86, 136.35, 130.04, 129.17, 128.57, 127.99, 126.70, 58.67, 57.07, 21.51, 21.06. HRMS (ESI-Q-TOF, m/z) calcd for C₁₈H₂₀O₃S [M + Na]⁺: 339.1056, found [M + Na]⁺: 339.1031.

(Z)-3-(4-methoxyphenyl)-4-tosylbut-2-en-1-ol (4ca)

Yield:88% (96 mg), white solid, m.p.:71.3-72.8 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.62 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 8.6 Hz, 2H), 5.96 (t, J = 6.1 Hz, 1H), 4.71 (t, J = 5.2 Hz, 1H), 4.51 (s, 2H), 3.82 (t, J = 5.6 Hz, 2H), 3.74 (s, 3H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 159.02, 144.69, 136.61, 136.42, 133.25, 130.04, 128.57, 128.01, 127.66, 113.96, 58.69, 57.14, 55.54, 21.51. HRMS (ESI-Q-TOF, m/z) calcd for C₁₈H₂₀O₄S [M + Na]⁺: 355.0971, found [M + Na]⁺: 355.0980.

(Z)-3-(4-nitrophenyl)-4-tosylbut-2-en-1-ol (4ea)

Yield: 65% (62 mg), white solid, m.p.:134.4-135.8 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 8.09 (d, J = 8.0 Hz, 2H), 7.71-7.55 (m, 4H), 7.34 (d, J = 7.4 Hz, 2H), 6.26 (t, J = 6.0 Hz, 1H), 4.90 (t, J = 5.3 Hz, 1H), 4.69 (s, 2H), 3.92 (t, J = 5.6 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 147.61, 146.69, 145.01, 142.38, 136.03, 130.12, 128.67, 128.13, 126.9, 123.70, 58.84, 56.63, 21.45. HRMS (ESI-Q-TOF, m/z) calcd for C₁₇H₁₇NO₅S [M + Na]⁺: 370.0763, found [M + Na]⁺: 370.0725.

(Z)-4-tosyl-3-(4-(trifluoromethyl)phenyl)but-2-en-1-ol (4fa)

Yield: 60% (73 mg), white solid, m.p.:123.7-124.5 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.67-7.48 (m, 6H), 7.30 (d, J = 8.1 Hz, 2H), 6.16 (t, J = 6.0 Hz, 1H), 4.86 (t, J = 5.3 Hz, 1H), 4.65 (s, 2H), 3.92 (t, J = 5.7 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 144.92, 144.8, 140.88, 136.09, 130.02, 128.64, 127.67, 127.31, 125.38, 125.34, 58.78, 56.79, 21.39. HRMS (ESI-Q-TOF, m/z) calcd for C₁₈H₁₇F₃O₃S [M + Na]⁺: 393.0712, found [M + Na]⁺: 393.0748.

(Z)-4-(4-hydroxy-1-tosylbut-2-en-2-yl)benzonitrile (4ga)

Yield: 70% (75 mg), white solid, m.p.:135.2-137.0 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.71 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 6.19 (t, J = 6.0 Hz, 1H), 4.86 (t, J = 5.3 Hz, 1H), 4.65 (s, 2H), 3.89 (t, J = 5.7 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 145.56, 144.95, 141.62, 136.05, 132.50, 130.10, 128.66, 127.81, 127.17, 119.27, 110.02, 58.79, 56.54, 21.49. HRMS (ESI-Q-TOF, m/z) calcd for C₁₈H₁₇NO₃S [M + Na]⁺: 350.0886, found [M + Na]⁺: 350.0827.

(Z)-1-(4-(4-hydroxy-1-tosylbut-2-en-2-yl)phenyl)ethan-1-one (4ha)

Yield:73% (80 mg), white solid, m.p.:108.4-109.7 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.83 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 7.8 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 6.18 (t, J = 6.0 Hz, 1H), 4.84 (t, J = 5.3 Hz, 1H), 4.63 (s, 2H), 3.88 (t, J = 5.6 Hz, 2H), 2.57 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 197.86, 145.44, 144.88, 140.61, 136.16, 135.83, 132.00, 131.90, 130.09, 129.29, 129.17, 128.63, 128.56, 127.09, 58.78, 56.75, 27.17, 21.48. HRMS (ESI-Q-TOF, m/z) calcd for C₁₉H₂₀O₄S [M + Na]⁺: 367.0934, found [M + Na]⁺: 367.0980.

(Z)-3-(4-fluorophenyl)-4-tosylbut-2-en-1-ol (4ia)

Yield: 79% (64 mg), white solid, m.p.:114.2-116.5 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.62 (d, J = 7.9 Hz, 2H), 7.46-7.30 (m, 4H), 7.07 (t, J = 8.7 Hz, 2H), 6.01 (t, J = 6.1 Hz, 1H), 4.77 (t, J = 5.2 Hz, 1H), 4.57 (s, 2H), 3.84 (t, J = 5.6 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 144.80, 138.59, 137.41, 136.28, 130.05, 128.93, 128.85, 128.60, 127.29, 58.69, 57.13, 21.50. HRMS (ESI-Q-TOF, m/z) calcd for C₁₇H₁₇FO₃S [M + Na]⁺: 343.0717, found [M + Na]⁺: 343.0780.

(Z)-3-(3,4-difluorophenyl)-4-tosylbut-2-en-1-ol (4ja)

Yield: 68% (75 mg), white solid, m.p.:67.9-68.0 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.61 (d, J = 8.2 Hz, 2H), 7.44 (ddd, J = 12.5, 7.8, 2.2 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.28 (dd, J = 10.5, 8.6 Hz, 1H), 7.20 (d, J = 8.0 Hz, 1H), 6.09 (t, J = 6.1 Hz, 1H), 4.81 (t, J = 5.3 Hz, 1H), 4.60 (s, 2H), 3.87 (t, J = 5.7 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 144.86, 139.75, 138.60, 136.16, 130.02, 128.67, 126.52, 123.80, 117.56, 117.39, 116.11, 115.93, 58.68, 56.82, 21.46. HRMS (ESI-Q-TOF, m/z) calcd for C₁₇H₁₆F₂O₃S [M + Na]⁺: 361.0656, found [M +

Na]+: 361.0686.

(Z)-3-(3-chloro-4-fluorophenyl)-4-tosylbut-2-en-1-ol (4ka)

Yield:65% (75mg), white solid, m.p.:60.4-65.2 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.59 (d, J = 8.1 Hz, 2H), 7.50-7.43 (m, 1H), 7.31 (m, 4H), 6.06 (t, J = 6.0 Hz, 1H), 4.61 (s, 2H), 3.88 (d, J = 6.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 144.86, 139.85, 138.73, 136.14, 130.00, 129.01, 128.63, 127.66, 126.46, 119.68, 116.97, 116.76, 58.69, 56.87, 21.49. HRMS (ESI-Q-TOF, m/z) calcd for C₁₇H₁₆CIFO₃S [M + Na]⁺: 377.0355, found [M + Na]⁺: 377.0390.

(E)-3-(thiophen-2-yl)-4-tosylbut-2-en-1-ol (4la)

Yield: 80% (81 mg), white solid, m.p.:113.6-114.8 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.69 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 5.1 Hz, 1H), 7.10 (d, J = 3.4 Hz, 1H), 6.91 (dd, J = 5.0, 3.7 Hz, 1H), 6.15 (t, J = 6.3 Hz, 1H), 4.78 (t, J = 5.3 Hz, 1H), 4.54 (s, 2H), 3.86 (t, J = 5.6 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 144.93, 144.28, 136.39, 136.17, 130.12, 128.68, 128.06, 125.70, 125.30, 122.25, 58.35, 57.01, 21.54. HRMS (ESI-Q-TOF, m/z) calcd for C₁₅H₁₆O₃S₂ [M + Na]⁺: 331.0486, found [M + Na]⁺: 331.0439.

(Z)-3-(4-methoxycarbonylphenyl)-4-tosylbut-2-en-1-ol (4ma)

Yield:62% (73 mg), white solid, m.p.:83.5-85.7 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.82 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 6.18 (t, J = 6.1 Hz, 1H), 4.85 (t, J = 5.3 Hz, 1H), 4.63 (s, 2H), 3.89 (t, J = 5.7 Hz, 2H), 3.85 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 145.56, 144.88, 140.74, 136.15, 132.00, 131.90, 130.08, 129.45, 129.29, 129.17, 128.64, 128.54, 127.49, 127.17, 58.79, 56.75, 52.56, 21.46. HRMS (ESI-Q-TOF, m/z) calcd for C₁₉H₂₀O₅S [M + Na]⁺: 383.0975, found [M + Na]⁺: 383.0929.

(Z)-3-phenyl-4-(phenylsulfonyl)but-2-en-1-ol (4ab)

Yield:65% (64 mg), white solid, m.p.:68.6-69.7 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.76 (d, J = 7.3 Hz, 2H), 7.66 (d, J = 7.5 Hz, 1H), 7.55 (t, J = 7.7 Hz, 2H), 7.37 (d, J = 6.9 Hz, 2H), 7.23 (dt, J = 6.8, 4.7 Hz, 3H), 6.05 (t, J = 6.2 Hz, 1H), 4.76 (t, J = 5.4 Hz, 1H), 4.61 (s, 2H), 3.85 (t, J = 5.8 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 140.89, 139.18, 138.73, 134.25, 129.63, 128.61, 128.56, 128.03, 127.67, 126.79, 58.73, 56.94. HRMS (ESI-Q-TOF, m/z) calcd for C₁₆H₁₆O₃S [M + Na]⁺: 311.0742, found [M + Na]⁺: 311.0718.

(Z)-4-((4-methoxyphenyl)sulfonyl)-3-phenylbut-2-en-1-ol (4ca)

Yield:81% (80 mg), white solid, m.p.:81.3-83.2 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.65 (d, J = 8.9 Hz, 2H), 7.36 (d, J = 6.9 Hz, 2H), 7.30-7.14 (m, 3H), 7.04 (d, J = 8.9 Hz, 2H), 6.03 (t, J = 6.9 Hz, 2H), 7.30-7.14 (m, 3H), 7.04 (d, J = 8.9 Hz, 2H), 7.30 (t, J = 6.9 Hz, 2Hz), 7.30 (t, J = 6.9 Hz), 7.30 (t, J= 6.1 Hz, 1H), 4.76 (t, J = 5.3 Hz, 1H), 4.54 (s, 2H), 3.85 (d, J = 5.7 Hz, 2H), 3.82 (s, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ_C 163.72, 140.97, 138.43, 130.83, 130.66, 128.59, 128.37, 127.59, 126.80, 114.80, 58.74, 57.28, 56.23. HRMS (ESI-Q-TOF, m/z) calcd for $C_{17}H_{18}O_4S$ [M + Na]⁺: 341.0846, found [M + Na]⁺: 341.0823.

(Z)-N-(4-((4-hydroxy-2-phenylbut-2-en-1-yl)sulfonyl)phen-

yl)acetamide (4ad)

Yield: 79% (78 mg), yellow oil. ¹H NMR (400 MHz, DMSO- d_6) δ_H 10.36 (s, 1H), 7.69 (m, 4H), 7.39 (d, J = 7.2 Hz, 2H), 7.31-7.05 (m, 3H), 6.04 (t, J = 6.1 Hz, 1H), 4.74 (s, 1H), 4.53 (s, 2H), 3.82 (s, 2H), 2.09 (s, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 199.62, 169.59, 144.47, 141.01, 138.46, 132.58, 129.82, 128.60, 128.26, 127.62, 126.83, 118.82, 58.72, 57.27, 24.66.HRMS (ESI-Q-TOF, m/z) calcd for $C_{18}H_{19}NO_4S$ [M + Na]⁺: 368.0955, found [M + Na]⁺: 368.0927.

4ae

(Z)-4-((4-fluorophenyl)sulfonyl)-3-phenylbut-2-en-1-ol (4ae)

Yield: 78% (77 mg), white solid, m.p.:86.0-87.1 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.83-7.74 (m, 2H), 7.35 (t, J = 8.9 Hz, 4H), 7.24 (m, 3H), 6.06 (t, J = 6.2 Hz, 1H), 4.79 (s, 1H), 4.64 (s, 2H), 3.93 (d, J = 5.9 Hz, 2H). ¹³C NMR (151 MHz, DMSO- d_6) δ_C 166.32, 164.64, 140.74, 138.80, 135.51, 131.87, 131.81, 128.58, 128.06, 127.64, 126.79, 116.81, 116.66, 58.82, 56.96. HRMS (ESI-Q-TOF, m/z) calcd for $C_{16}H_{15}FO_3S [M + Na]^+$: 329.0648, found $[M + Na]^+$: 329.0618.

4af

(Z)-4-((4-chlorophenyl)sulfonyl)-3-phenylbut-2-en-1-ol (4af)

Yield: 80% (80 mg), yellow oil. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.73 (d, J = 8.6 Hz, 2H), 7.58 (d, J = 8.6 Hz, 2H), 7.33 (dd, J = 7.8, 1.6 Hz, 2H), 7.27-7.16 (m, 3H), 6.07 (t, J = 6.2 Hz, 1H), 4.80 (s, 1H), 4.66 (s, 2H), 3.95 (d, J = 5.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 140.71, 139.35, 138.88, 138.00, 130.58, 129.68, 128.59, 127.95, 127.63, 126.82, 58.85, 56.91. HRMS (ESI-Q-TOF, m/z) calcd for $C_{16}H_{15}CIO_3S$ [M + Na]⁺: 345.0377, found [M + Na]⁺: 345.0323.

4ag (Z)-4-((2,4-dichlorophenyl)sulfonyl)-3-phenylbut-2-en-1-ol (4ag) Yield: 73% (73 mg), white solid, m.p.:99.1-100.5 °C. ¹H NMR (400 MHz, DMSO- d_6) δ_H 7.78 (d, J = 8.5 Hz, 1H), 7.66 (d, J = 1.9 Hz, 1H), 7.58 (dd, J = 8.5, 1.9 Hz, 1H), 7.31-7.11 (m, 5H), 6.08 (t, J = 6.1 Hz, 1H), 4.90 (s, 1H), 4.78 (s, 2H), 4.18 (t, J = 5.1 Hz, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ_C 140.71, 138.91, 138.40, 132.63, 130.62, 128.59, 128.46, 127.90, 127.61, 126.82, 58.83, 56.90. HRMS (ESI-Q-TOF, m/z) calcd for $C_{16}H_{14}Cl_2O_3S$ [M + Na]⁺: 378.9963, found [M + Na]⁺: 378.9933.

4ah(Z)-4-(naphthalen-2-ylsulfonyl)-3-phenylbut-2-en-1-ol (4ah)Yield: 85% (85 mg), yellow oil. ¹H NMR (400 MHz, DMSO- d_6) δ_H 8.42 (s, 1H), 8.15 (d, J = 8.0Hz, 1H), 8.05 (m, 2H), 7.82-7.63 (m, 3H), 7.37 (d, J = 7.4 Hz, 2H), 7.17 (t, J = 7.4 Hz, 2H), 7.11(d, J = 7.1 Hz, 1H), 6.06 (t, J = 6.1 Hz, 1H), 4.74 (s, 1H), 4.68 (s, 2H), 3.90 (s, 2H). ¹³C NMR(151 MHz, DMSO- d_6) δ_C 140.84, 138.68, 136.46, 135.18, 132.04, 130.26, 129.90, 129.67, 128.47,128.28, 128.06, 128.03, 127.52, 126.76, 123.40, 58.81, 57.07. HRMS (ESI-Q-TOF, m/z) calcdfor $C_{20}H_{18}O_3S$ [M + Na]⁺: 361.0835, found [M + Na]⁺: 361.0869.

3 The Structural Confirmation of the representative compound **4**aa

The chemical structures of the target compounds were confirmed by ¹H NMR, ¹³C NMR, and MS spectra. The representative compound **4aa** was found to have the molecular formula $C_{17}H_{18}O_3S$ determined by mass spectroscopy. ¹H NMR spectroscopy showed that all the protons of **4aa** resonated with the expected chemical shifts (**Figure 2SA**), the exchangeable signal observed at $\delta = 4.76$ was assigned to –OH (**Figure 2SB**). The results of ¹³C NMR experiment further confirmed its chemical structure. In addition, the configuration of alkene double bond was investigated by NOESY NMR. As shown in **Figure 1SB**, an evident NOE signal was observed between protons of H¹ (Ts-CH₂-C, $\delta_1 = 4.53$ ppm) and H² (C-CH₂-OH, $\delta_2 = 3.82$ ppm), which existed only in the *Z* isomer due to the appropriate intramolecular H-H distance (**Figure 1A**). Thus, all the related compounds were assigned the same *Z*-configuration by analogy unambiguously.

Figure.1S. The structure and NOESY NMR spectra of the representative compound 4aa

Figure.2S. The ¹HNMR (A) and deuterium exchange ¹HNMR (B) spectra of the representative compound 4aa

4. NMR Spectra of New Compounds

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppa)

