Electronic Supplementary Information For

Generation of reactive cobalt oxo oxamate radical species for biomimetic oxidation of contaminants

Nan Li,* Yun Zheng, Xuemei Jiang, Ran Zhang and Wenxing Chen*

National Engineering Lab for Textile Fiber Materials & Processing Technology

(Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China

Corresponding Author

*E-mail:linan @zstu.edu.cn, Phone: +86 571 86843611; Fax: +86 571 86843611.

*E-mail:wxchen@zstu.edu.cn, Phone: +86 571 86843611; Fax: +86 571 86843611.

306.9402 ¬- (+0H)	262.9504 ¬ (+0H)	252.9663 ¬ (+2H)
		N N COLO
306.9401 (+0.1.mDa) C ₁₀ H ₄ N ₂ O ₆ Co (-none)	262.9503 (+0.1.mDa) (S:4.0, B:2) C ₉ H ₄ N ₂ O ₄ Co (-CO ₂)	252.9660 (+0.3.mDa) (S:2.0, B:2) C ₈ H ₆ N ₂ O ₄ Co (-C ₂ O ₂)
234.9559 ¬·- (+0H)	190.9657 ¬·- (+0H)	132.0327 ¬·- (+0H)
234.9559 (+0H)	190.9657 ¬- (+0H)	132.0327 (+0H)
234.9559 ¬- (+0H)	190.9657 ¬- (+0H)	132.0327 ¬- (+0H)
234.9559 ¬- (+0H) 234.9554 (+0.5.mDa) (S:3.0, B:2)	190.9657 (+0H)	132.0327 ¬- (+0H)

Table S1. High-resolution parent and fragment ion data for complex 1.

351.9253 ¬ (+0H)	279.9409 ¬ (+0H)	279.9409 ¬·- (+0H)
351.9252 (+0.1.mDa)	279.9405 (+0.4.mDa) (S·3 0, B·3)	279.9405 (+0.4.mDa) (S·3 0, B·2)
$C_{10}H_3N_3O_8Co$ (-none)	(3.3.0, B.3) C ₈ H ₃ N ₃ O ₅ C ₀ (-C ₂ O ₃)	(3.3.0, B.2) C ₈ H ₃ N ₃ O ₅ Co (-C ₂ O ₃)
279.9409 ¬ (+0H)	252.9543 ¬- (+1H)	235.9515 ¬- (+0H)
279.9405 (+0.4.mDa)	252.9534 (+0.9.mDa)	235.9506 (+0.9.mDa)
(S:4.0, B:3)	(S:6.0, B:4)	(S:9.5, B:4)
C ₈ H ₃ N ₃ O ₅ Co (-C ₂ O ₃)	C ₇ H ₄ N ₃ O ₄ Co (-C ₃ O ₄)	C ₇ H ₃ N ₃ O ₃ Co (-C ₃ O ₅)
206.0203 ¬- (+1H)	206.0203 ¬- (+1H)	206.0203 ¬- (+1H)
206.0202 (+0.1.mDa)	206.0202 (+0.1.mDa)	206.0202 (+0.1.mDa)
(S:10.5, B:4)	(S:11.0, B:4)	(S:11.0, B:4)
$C_8H_4N_3O_4(-C_2O_4C_0)$	$C_8H_4N_3O_4(-C_2O_4C_0)$	$C_8H_4N_3O_4(-C_2O_4C_0)$
178.0256 ¬- (+1H)	177.0179 ¬·- (+0H)	147.0197 ¬- (+0H)

 Table S3. High-resolution parent and fragment ion data for complex 3.

320.9558 ¬·- (+0H)	248.9711 ¬- (+0H)	248.9711 ¬ - (+0H)
of the second se	o N N X O	N CO CO
320 9558 (+0 0 mDa)	248.9710 (+0.1.mDa)	248.9710 (+0.1.mDa)
$C_{\rm eff}$ $H_{\rm e}N_{\rm e}O_{\rm e}C_{\rm o}$ (-none)	(S:3.0, B:2)	(S:4.0, B:3)
	C ₉ H ₆ N ₂ O ₃ Co (-C ₂ O ₃)	C ₉ H ₆ N ₂ O ₃ Co (-C ₂ O ₃)
248.9711 ¬ (+0H)	175.0507 ¬- (+1H)	175.0507 ¬- (+1H)
N N N CO		N X X Y
248.9710 (+0.1.mDa)	175.0508 (-0.1.mDa)	175.0508 (-0.1.mDa)
(S:7.5, B:4)	(S:10.5, B:4)	(S:11.0, B:4)
C ₉ H ₆ N ₂ O ₃ Co (-C ₂ O ₃)	C ₉ H ₇ N ₂ O ₂ (-C ₂ O ₄ Co)	C ₉ H ₇ N ₂ O ₂ (-C ₂ O ₄ Co)
175.0507 ¬- (+1H)	147.0550 ¬- (+1H)	147.0550 ¬- (+1H)

Fig. S1. Synapt G2-S HDMS (ESI) in negative mode of complex **2** in MeCN aqueous solution for (a) QTOF-MS and (b) MS/MS.

Fig. S2. Synapt G2-S HDMS (ESI) in negative mode of complex **3** in MeCN aqueous solution for (a) QTOF-MS and (b) MS/MS.

Fig. S3. The Co 2p spectra of the cobalt complex 1.

Fig. S4. ¹H NMR spectrum of the complex **1** in D₂O at room temperature (solv=solvent, internal standard).

Fig. S5. Substitute effect of oxamate anionic cobalt(III) complexes on the removal efficiency of pchlorophenol (0.05mM) by H_2O_2 catalyzed by various cobalt(III) complexes containing a series of electron-rich and electron–poor substrates on the ligands, where the temperature is 25 °C, the concentration of $[Co^{III}(opbaX)]^-$ (X=CH₃, H, NO₂) is 0.02mM, and that of H_2O_2 is 40mM.

Fig. S6. The effect of temperature on the degradation kinetics of AR1 by complex 1 and H_2O_2 , T=25 °C, pH 9.0.

Fig. S7. Effect of initial H_2O_2 concentration on catalyst oxidation of AR1 (0.05 mM) by complex 1(0.02 mM) and H_2O_2 , T=25 °C, pH 9.0.

Table S4. The total electron spin energy of $[\bullet O=Co^{IV}(opbaCH_3)]^-$, $[\bullet O=Co^{IV}(opba)]^-$ and $[\bullet O=Co^{IV}(opbaNO_2)]^-$.

Total operate	[•O=Co ^{IV} (opbaCH ₃)] ⁻	[•O=Co ^{IV} (opba)] ⁻	$[\bullet O=Co^{IV}(opbaNO_2)]^-$
Total energy	(a.u.)	(a.u.)	(a.u.)
S=0	-2441.28342893	-2401.97477567	-2606.40178006
S=1	-2441.31674986	-2402.00879031	-2606.43523960
S=2	-2441.30774637	-2401.99902687	-2606.42342433

Center	Atomic	Coo	ordinates (Angstro	ms)
Number	Number	X	Y	Ζ
1	6	-0.700275	3.940718	0.000233
2	6	0.700664	3.940668	0.000275
3	6	1.419699	2.737082	0.000182
4	6	0.71118	1.529754	0.00004
5	6	-0.710961	1.529786	0.000004
6	6	-1.419395	2.737183	0.000099
7	1	-1.241891	4.882087	0.000303
8	1	1.242367	4.881989	0.000379
9	1	2.500907	2.716495	0.000213
10	1	-2.500603	2.716651	0.00006
11	7	1.247588	0.222483	-0.000038
12	7	-1.247494	0.222645	-0.000082
13	6	2.56823	-0.160101	0.000043
14	8	3.568136	0.58632	-0.000115
15	6	2.647221	-1.703994	-0.000832
16	8	3.720973	-2.311404	0.000675
17	6	-2.568185	-0.159865	-0.000052
18	8	-3.568019	0.586684	0.00027
19	6	-2.647415	-1.703779	-0.000218
20	8	-3.721284	-2.310943	0.000516
21	27	-0.000069	-1.114212	-0.000209
22	8	-1.428641	-2.297395	-0.00008
23	8	1.428317	-2.297525	-0.000405

Table S5. The structure of $[Co^{III}(opba)]^-$ calculated by DFT (S=1).

Table S6. Mulliken spin densities of $[Co^{III}(opba)]^-$ (S=1).

Center Number	Atomic Number	density
1	С	0.006637
2	С	0.006657
3	С	0.008147
4	С	0.000867
5	С	0.000846
6	С	0.008166
7	Н	-0.000587
8	Н	-0.000588
9	Н	-0.000529
10	Н	-0.00053
11	Ν	0.005209
12	Ν	0.00523
	S9	

13	С	0.000107
14	0	0.049417
15	С	-0.006278
16	0	0.014033
17	С	0.000103
18	0	0.04942
19	С	-0.006274
20	0	0.01403
21	Co	1.816417
22	0	0.014742
23	0	0.014758

Table S7. The structure of $[\bullet O=Co^{IV}(opba)]^-$ calculated by DFT (S=1).

Center	Atomic	Coo	ordinates (Angstro	ms)
Number	Number	Х	Y	Ζ
1	С	0.701462	3.995124	0.002592
2	С	-0.70514	3.994514	0.002841
3	С	-1.42511	2.797443	0.000404
4	С	-0.71323	1.586533	-0.00217
5	С	0.711659	1.587163	-0.00252
6	С	1.42247	2.798674	-0.00016
7	Н	1.238953	4.9385	0.004479
8	Н	-1.24344	4.93743	0.004888
9	Н	-2.50587	2.777856	-0.01237
10	Н	2.503239	2.780088	-0.01346
11	Ν	-1.23389	0.289901	-0.03895
12	Ν	1.233341	0.290887	-0.03984
13	С	-2.54238	-0.10609	-0.22321
14	Ο	-3.5264	0.64641	-0.35761
15	С	-2.6062	-1.64218	-0.30658
16	Ο	-3.66662	-2.24644	-0.50558
17	С	2.54234	-0.10382	-0.22362
18	Ο	3.525459	0.649698	-0.35885
19	С	2.607932	-1.63989	-0.30581
20	Ο	3.66911	-2.24297	-0.5044
21	Co	0.000501	-1.04842	0.305524
22	Ο	1.404347	-2.2245	-0.18733
23	Ο	-1.40182	-2.22541	-0.18901
24	0	0.000255	-1.20639	1.936327

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	С	-3.73973542	-0.68786101	-0.00110193
2	С	-3.23564573	-2.00907665	-0.00349168
3	С	-1.86751676	-2.27646976	-0.00464854
4	С	-0.96975391	-1.19539593	-0.00452562
5	С	-1.46330828	0.14020774	-0.00358425
6	С	-2.84570212	0.38950046	-0.00250968
7	Н	-3.93528595	-2.84085698	-0.00512715
8	Н	-1.48245576	-3.286553	-0.0201308
9	Н	-3.19697002	1.41255332	-0.01547311
10	Ν	0.42507853	-1.23805507	-0.04132501
11	Ν	-0.42841352	1.07730724	-0.03865215
12	С	1.24731216	-2.3309564	-0.22537856
13	О	0.87733856	-3.51289668	-0.36294158
14	С	2.71221241	-1.8626524	-0.30454382
15	О	3.64337573	-2.65210727	-0.5042123
16	С	-0.50894704	2.44204259	-0.22473652
17	О	-1.55522276	3.10522437	-0.36026169
18	С	0.91092754	3.03271129	-0.31001981
19	О	1.10926443	4.23692721	-0.51159441
20	Co	1.25566233	0.38117757	0.30870277
21	О	1.87430819	2.10543209	-0.19080587
22	Ο	2.84624852	-0.5325271	-0.18180823
23	О	1.40250331	0.43924824	1.94287797
24	С	-5.23361	-0.44461065	0.01193209
25	Н	-5.73489319	-0.981673	-0.80367615
26	Н	-5.46208078	0.62013643	-0.09623464
27	Н	-5.68777699	-0.78920883	0.95112597

Table S8. The structure of $[\bullet O=Co^{IV}(opbaCH_3)]^-$ calculated by DFT (S=1).

Table S9. The structure of $[\bullet O=Co^{IV}(opbaNO_2)]^-$ calculated by DFT (S=1).

Center	Atomic	Coordinates (Angstroms)		
Number	Number	X	Y	Z
1	С	-3.29653114	-0.49054248	-0.00275171
2	С	-2.90704272	-1.83976583	-0.00624603
3	С	-1.5551274	-2.16852088	-0.00700361
4	С	-0.60365043	-1.13207088	-0.00163718
5	С	-1.01950591	0.23389776	-0.00127994
6	С	-2.37708009	0.56438477	-0.00245955
7	Н	-3.66923583	-2.60686401	-0.00747386

 8	Н	-1.22189673	-3.19623819	-0.02117705
9	Н	-2.70280987	1.59369925	-0.01680289
10	Ν	0.78108698	-1.2550603	-0.03156334
11	Ν	0.0699159	1.10996637	-0.03911146
12	С	1.54267919	-2.3944824	-0.21085645
13	0	1.1094984	-3.55409686	-0.33111465
14	С	3.02824523	-2.00365375	-0.30615031
15	0	3.91803364	-2.83661151	-0.50254928
16	С	0.06575035	2.47896492	-0.22016018
17	0	-0.94119526	3.19653244	-0.35272199
18	С	1.51633076	2.98539062	-0.29810832
19	0	1.7951201	4.17166266	-0.49298266
20	Co	1.70774455	0.32101237	0.29622914
21	0	2.42506626	1.99649535	-0.18061879
22	0	3.23084555	-0.67610923	-0.2034469
23	0	1.85625635	0.35201193	1.91917227
24	Ν	-4.71819923	-0.17742536	0.00038882
25	0	-5.07150174	1.03973091	0.01180856
 26	0	-5.54827243	-1.13985407	-0.00764798

Table S10. Mulliken spin densities of $[\bullet O=Co^{IV}(opba)]^-$ (S=1).

Center Number	Atomic Number	density
1	С	-0.017188
2	С	-0.017268
3	С	0.001146
4	С	-0.018543
5	С	-0.018463
6	С	0.00108
7	Н	0.000914
8	Н	0.000917
9	Н	0.000199
10	Н	0.000201
11	Ν	-0.048369
12	Ν	-0.048377
13	С	0.011299
14	0	-0.037603
15	С	0.000093
16	0	-0.003415
17	С	0.011327
18	О	-0.037606
19	С	0.000084
20	0	-0.003426

21	Co	1.244726
22	0	0.026031
23	0	0.026217
24	0	0.926025

Table S11. Mulliken spin densities of [•O=Co^{IV}(opbaCH₃)]⁻ (S=1).

Center Number	Atomic Number	density
1	С	-0.022771
2	С	-0.024299
3	С	0.001909
4	С	-0.025985
5	С	-0.022891
6	С	0.005978
7	Н	0.001215
8	Н	0.000248
9	Н	0.000071
10	Ν	-0.060499
11	Ν	-0.057163
12	С	0.013261
13	0	-0.046033
14	С	0.000186
15	0	-0.00345
16	С	0.01266
17	0	-0.042948
18	С	0.00012
19	0	-0.002937
20	Со	1.284437
21	0	0.024963
22	0	0.023876
23	0	0.940231
24	С	0.001978
25	Н	-0.000783
26	Н	-0.00005
27	Н	-0.001324

Table S12. Mulliken spin densities of $[\bullet O=Co^{IV}(opbaNO_2)]^-$ (S=1).

Center Number	Atomic Number	density
1	С	-0.005699
2	С	-0.003526

3	С	-0.000164
4	С	-0.004122
5	С	-0.00545
6	С	-0.005774
7	Н	0.000223
8	Н	0.000066
9	Н	0.000244
10	Ν	-0.014642
11	Ν	-0.021156
12	С	0.005355
13	0	-0.016278
14	С	0.000073
15	0	-0.003468
16	С	0.007312
17	0	-0.020575
18	С	0.000325
19	0	-0.004811
20	Со	1.130697
21	О	0.027168
22	0	0.030516
23	О	0.906423
24	Ν	0.000726
25	0	0.000058
26	0	-0.003522

Table S13. The total electron spin energy of HO–Co^{III}(opbaCH₃)•, HO–Co^{III}(opba)• and

 $HO{-}Co^{III}(opbaNO_2)\bullet.$

Total anarou	$HO-Co^{III}(opbaCH_3)\bullet$	HO-Co ^{III} (opba)•	HO-Co ^{III} (opbaNO ₂)•
Total energy	(a.u.)	(a.u.)	(a.u.)
S=0	-2441.78671069	-2402.47353885	-2606.87669333
S=1	-2441.80261400	-2402.49020651	-2606.88366260
S=2	-2441.79370375	-2402.48109935	-2606.88609619

 Table S14. Mulliken spin densities of HO–Co^{III}(opbaNO₂)• (S=2).

Center Number	Atomic Number	density
1	С	0.092813
2	С	0.116385
3	С	-0.047266
4	С	0.138211

5 C 0.155262 6 C 0.017176 7 H -0.005066 8 H 0.000526 9 H -0.001488 10 N 0.142102 11 N 0.207607 12 C -0.031422 13 O 0.10779 14 C -0.006757 15 O 0.00377	
6C0.0171767H-0.0050668H0.0005269H-0.00148810N0.14210211N0.20760712C-0.03142213O0.1077914C-0.00675715O0.00377	
7 H -0.005066 8 H 0.000526 9 H -0.001488 10 N 0.142102 11 N 0.207607 12 C -0.031422 13 O 0.10779 14 C -0.006757 15 O 0.00377	
8 H 0.000526 9 H -0.001488 10 N 0.142102 11 N 0.207607 12 C -0.031422 13 O 0.10779 14 C -0.006757 15 O 0.00377	
9 H -0.001488 10 N 0.142102 11 N 0.207607 12 C -0.031422 13 O 0.10779 14 C -0.006757 15 O 0.00377	
10N0.14210211N0.20760712C-0.03142213O0.1077914C-0.00675715O0.00377	
11N0.20760712C-0.03142213O0.1077914C-0.00675715O0.00377	
12C-0.03142213O0.1077914C-0.00675715O0.00377	
13O0.1077914C-0.00675715O0.00377	
14C-0.00675715O0.00377	
15 O 0.00377	
16 C -0.046056	
17 O 0.141434	
18 C -0.006579	
19 O 0.004353	
20 Co 2.273277	
21 O 0.100559	
22 O 0.086938	
23 O 0.534305	
24 N -0.013619	
25 O -0.021493	
26 O 0.05066	
27 Н 0.006577	

Table S15. Mulliken spin densities of HO–Co^{III}(opba)• (S=1).

Center Number	Atomic Number	density
1	С	-0.120116
2	С	-0.120118
3	С	0.049756
4	С	-0.158409
5	С	-0.158366
6	С	0.049744
7	Н	0.005726
8	Н	0.005726
9	Н	-0.000683
10	Н	-0.000683
11	Ν	-0.12719
12	Ν	-0.127107
13	С	0.031807
14	0	-0.0741
15	С	-0.013013
16	0	0.022934

17	С	0.031836
18	0	-0.074141
19	С	-0.013015
20	0	0.022881
21	Co	2.152981
22	0	0.062174
23	0	0.062503
24	0	0.486382
25	Н	0.002489

 Table S16. Mulliken spin densities of HO–Co^{III}(opbaCH₃)• (S=1).

Center Number	Atomic Number	density
1	С	-0.141564
2	С	-0.128656
3	С	0.048066
4	С	-0.177364
5	С	-0.149817
6	С	0.076466
7	Н	0.005969
8	Н	-0.000517
9	Н	-0.001616
10	Ν	-0.127819
11	Ν	-0.099952
12	С	0.030782
13	0	-0.07712
14	С	-0.012522
15	0	0.022774
16	С	0.025969
17	0	-0.060269
18	С	-0.01247
19	0	0.022413
20	Co	2.154454
21	0	0.061888
22	0	0.0603
23	0	0.48371
24	С	0.009941
25	Н	-0.007635
26	Н	0.000062
27	Н	-0.007882
28	Н	0.002409