Supporting Information

Corona discharge-induced reduction of quinones in negative electrospray ionization mass spectrometry

Jiying Pei,^{*a,b*} Cheng-Chih Hsu,^{*c*} Yinghui Wang,^{*a,b*,*} Kefu Yu^{*a,b*,*}

^a School of Marine Sciences, Guangxi University, Nanning, 530004, P. R. China

^b Coral Reef Research Center of China, Nanning, 53004, P. R. China

^c Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan

*Contact Information for Corresponding Author:

School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530004, P. R. China. Yinghui Wang: Tel: (+) 86 771 3227177. E-mail: wyh@gxu.edu.cn.

Key word: Quinone reduction, Corona discharge, Negative electrospray ionization

Table of Contents

Fig. S1 Setup used in the experiment 3
Fig. S2 MS/MS spectra of a) $M^{-}(m/z \ 176)$ and b) $[M + H]^{-}(m/z \ 177)$ ions of DCBQ4
Fig. S3 Oxidation pathway of reserpine
Fig. S4 Effect of NH ₄ Ac on DCBQ reduction during negative ESI MS
Fig. S5 Effect of sheath gas (SF ₆) on DCBQ reduction during negative ESI MS7
Fig. S6. Effect of a) NH_4Ac , b) solvent composition and c) sheath gas (N_2) on DCBQ reduction
during negative ESI MS with a commercial ESI source
Fig. S7 MS/MS spectra of a) M^{-} (<i>m</i> / <i>z</i> 158) and b) [M + H] ⁻ (<i>m</i> / <i>z</i> 159) ions of 1,2-NQ9
Fig. S8 Effect of sheath gas (N_2) on 1,2-NQ reduction in a commercial ESI source with Orbitrap
Exactive Plus mass spectrometer
Fig. S9 a) High resolution and b, c) MS ⁿ mass spectra of DCBQ12

Fig. S1 Setup used in the experiment

Fig. S2 MS/MS spectra of a) $M^{-}(m/z \ 176)$ and b) $[M + H]^{-}(m/z \ 177)$ ions of DCBQ

Fig. S3 Oxidation pathway of reserpine

Fig. S4 Effect of NH₄Ac (5 mmol/L) on DCBQ (2 μ g/mL in CH₃OH/H₂O (v/v, 1:1)) reduction during negative ESI MS. Spray voltage = 3 kV, flow rate = 2 μ L/min.

Fig. S5 Effect of sheath gas (SF₆) on DCBQ (2 μ g/mL in CH₃OH/H₂O (v/v, 1:1)) reduction during negative ESI MS. Flow rate = 2 μ L/min, spray voltage = 3 kV.

Fig. S6 Effect of a) NH₄Ac, b) solvent composition and c) sheath gas (N₂) on DCBQ (2 μ g/mL) reduction during negative ESI MS with a commercial ESI source. Conditions: a) flow rate = 2 μ L/min, spray voltage = 3 kV, solvent: CH₃OH/H₂O (v/v, 1:1), N₂ flow rate = 5 arb; b) flow rate = 2 μ L/min, spray voltage = 3 kV, N₂ flow rate = 5 arb; c) flow rate = 2 μ L/min, spray voltage = 5 kV, solvent: CH₃OH/H₂O (v/v, 1:1), C_{NH4Ac} = 5 mmol/L, N₂ flow rate = 5 arb.

Fig. S7 MS/MS spectra of a) M^{-} (*m*/*z* 158) and b) [M + H]⁻ (*m*/*z* 159) ions of 1,2-NQ

Fig. S8 Effect of sheath gas (N₂) on 1,2-NQ (5 μ g/mL) reduction in a commercial ESI source with Orbitrap Exactive Plus mass spectrometer. Flow rate = 2 μ L/min, spray voltage = 3 kV, solvent: CH₃OH/H₂O (v/v, 1:1), C_{NH4Ac} = 5 mmol/L.

Fig. S9 a) High resolution and (b, c) MSⁿ mass spectra of DCBQ and the derivatives.