Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

## **Biological and Chemical Guided Isolation of 3,4-Secograyanane Diterpenoids from the Roots of** *Pieris formosa*

Chang-Shan Niu, Yong Li, Yun-Bao Liu, Shuang-Gang Ma, Fei Liu, Li Li, Song Xu, Xiao-Jing Wang, Sheng Liu, Ru-Bing Wang, Jing Qu<sup>\*</sup>, and Shi-Shan Yu<sup>\*</sup>

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

\*To whom correspondence should be addressed. E-mail: yushishan@imm.ac.cn. Tel: +86-10-63165324. Fax:+86-10-63016757.

## **Supporting Information**

## List of Contents

| Figure S1. Online HPLC/UV/ESIMS <sup>2</sup> analyses of fraction D1a                                 | 8  |
|-------------------------------------------------------------------------------------------------------|----|
| <b>Figure S2</b> . Online HPLC/UV/ESIMS <sup>2</sup> analyses of fraction D2a                         | 8  |
| <b>Figure S3</b> . Online HPLC/UV/ESIMS <sup>2</sup> analyses of fraction D2b                         | 8  |
| Figure S4. Online HPLC/UV/ESIMS <sup>2</sup> analyses of fraction E1a                                 | 9  |
| <b>Figure S5</b> . Online HPLC/UV/ESIMS <sup>2</sup> analyses of fraction E1b                         | 9  |
| <b>Figure S6</b> . Online HPLC/UV/ESIMS <sup>2</sup> analyses of fraction E2a                         | 9  |
| Figure S7. IR spectrum of 1                                                                           | 10 |
| Figure S8. (+)-HRESIMS data of 1                                                                      | 10 |
| Figure S9. <sup>1</sup> H NMR spectrum of 1 (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)             |    |
| Figure S10. <sup>13</sup> C NMR spectrum of 1 (125 MHz, in $C_5D_5N$ )                                | 11 |
| Figure S11. DEPT spectrum of 1 (125 MHz, in C <sub>5</sub> D <sub>5</sub> N)                          | 11 |
| Figure S12. <sup>1</sup> H- <sup>1</sup> H COSY spectrum of 1 (500 MHz, in $C_5D_5N$ )                |    |
| Figure S13. HSQC spectrum of 1 (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                          | 12 |
| Figure S14. HMBC spectrum of 1 (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                          | 13 |
| Figure S15. NOESY spectrum of 1 (500 MHz, in $C_5D_5N$ )                                              | 13 |
| Table S1. Crystal data and structure refinement for 1                                                 | 14 |
| Figure S16. IR spectrum of 2                                                                          | 14 |
| Figure S17. (+)-HRESIMS data of 2                                                                     | 15 |
| <b>Figure S18</b> . <sup>1</sup> H NMR spectrum of <b>2</b> (500 MHz, in $C_5D_5N$ )                  | 15 |
| <b>Figure S19</b> . <sup>13</sup> C NMR spectrum of <b>2</b> (125 MHz, in $C_5D_5N$ )                 | 15 |
| <b>Figure S20</b> . DEPT spectrum of <b>2</b> (125 MHz, in C <sub>5</sub> D <sub>5</sub> N)           | 16 |
| <b>Figure S21</b> . <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>2</b> (500 MHz, in $C_5D_5N$ ) | 16 |
| Figure S22. HSQC spectrum of 2 (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                          | 17 |
| <b>Figure S23</b> . HMBC spectrum of <b>2</b> (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)           | 17 |
| Figure S24. NOESY spectrum of 2 (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                         | 18 |
| Figure S25. IR spectrum of 3                                                                          |    |
| Figure S26. (+)-HRESIMS data of 3                                                                     | 19 |

| <b>Figure S27</b> . <sup>1</sup> H NMR spectrum of <b>3</b> (600 MHz, in $C_5D_5N$ )                       | 19 |
|------------------------------------------------------------------------------------------------------------|----|
| <b>Figure S28</b> . <sup>13</sup> C NMR spectrum of <b>3</b> (150 MHz, in $C_5D_5N$ )                      | 19 |
| <b>Figure S29</b> . DEPT spectrum of <b>3</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                | 20 |
| <b>Figure S30</b> . <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>3</b> (600 MHz, in $C_5D_5N$ )      | 20 |
| <b>Figure S31</b> . HSQC spectrum of <b>3</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                |    |
| <b>Figure S32</b> . HMBC spectrum of <b>3</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                |    |
| <b>Figure S33</b> . NOESY spectrum of <b>3</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)               | 22 |
| Figure S34. IR spectrum of 4                                                                               | 22 |
| Figure S35. (+)-HRESIMS data of 4                                                                          |    |
| <b>Figure S36</b> . <sup>1</sup> H NMR spectrum of <b>4</b> (500 MHz, in $C_5D_5N$ )                       | 23 |
| <b>Figure S37</b> . <sup>13</sup> C NMR spectrum of <b>4</b> (125 MHz, in $C_5D_5N$ )                      | 23 |
| <b>Figure S38</b> . DEPT spectrum of <b>4</b> (125 MHz, in C <sub>5</sub> D <sub>5</sub> N)                |    |
| <b>Figure S39</b> . <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>4</b> (500 MHz, in $C_5D_5N$ )      | 24 |
| <b>Figure S40</b> . HSQC spectrum of <b>4</b> (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                |    |
| Figure S41. HMBC spectrum of 4 (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                               | 25 |
| Figure S42. NOESY spectrum of 4 (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                              |    |
| Figure S43. IR spectrum of 5                                                                               | 26 |
| Figure S44. (+)-HRESIMS data of 5                                                                          |    |
| <b>Figure S45</b> . <sup>1</sup> H NMR spectrum of <b>5</b> (600 MHz, in $C_5D_5N$ )                       |    |
| <b>Figure S46</b> . <sup>13</sup> C NMR spectrum of <b>5</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N) | 27 |
| <b>Figure S47</b> . DEPT spectrum of <b>5</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                |    |
| <b>Figure S48</b> . <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>5</b> (600 MHz, in $C_5D_5N$ )      |    |
| <b>Figure S49</b> . HSQC spectrum of <b>5</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                |    |
| <b>Figure S50</b> . HMBC spectrum of <b>5</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                | 29 |
| <b>Figure S51</b> . NOESY spectrum of <b>5</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)               |    |
| Figure S52. IR spectrum of 6                                                                               |    |
| Figure S53. (+)-HRESIMS data of 6                                                                          |    |
| <b>Figure S54</b> . <sup>1</sup> H NMR spectrum of <b>6</b> (600 MHz, in $C_5D_5N$ )                       | 31 |
| <b>Figure S55</b> . <sup>13</sup> C NMR spectrum of <b>6</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N) | 31 |
| <b>Figure S56</b> . DEPT spectrum of <b>6</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                | 32 |

| <b>Figure S57</b> . <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>6</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N) | 32 |
|----------------------------------------------------------------------------------------------------------------------------|----|
| <b>Figure S58</b> . HSQC spectrum of <b>6</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                |    |
| <b>Figure S59</b> . HMBC spectrum of <b>6</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                |    |
| Figure S60. NOESY spectrum of 6 (600 MHz, in C <sub>5</sub> D <sub>5</sub> N                                               |    |
| Figure S61. IR spectrum of 7                                                                                               |    |
| Figure S62. (+)-HRESIMS data of 7                                                                                          | 34 |
| Figure S63. <sup>1</sup> H NMR spectrum of 7 (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                 | 35 |
| <b>Figure S64</b> . <sup>13</sup> C NMR spectrum of <b>7</b> (125 MHz, in C <sub>5</sub> D <sub>5</sub> N)                 |    |
| <b>Figure S65</b> . DEPT spectrum of <b>7</b> (125 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                |    |
| <b>Figure S66</b> . <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>7</b> (500 MHz, in C <sub>5</sub> D <sub>5</sub> N) | 36 |
| Figure S67. HSQC spectrum of 7 500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                                |    |
| <b>Figure S68</b> . HMBC spectrum of <b>7</b> (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                |    |
| <b>Figure S69</b> . NOESY spectrum of <b>7</b> (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                               |    |
| Table S2. Crystal data and structure refinement for 7                                                                      |    |
| Figure S70. IR spectrum of 8                                                                                               |    |
| Figure S71. (+)-HRESIMS data of 8                                                                                          |    |
| <b>Figure S72</b> . <sup>1</sup> H NMR spectrum of <b>8</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                  |    |
| <b>Figure S73</b> . <sup>13</sup> C NMR spectrum of <b>8</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                 | 40 |
| <b>Figure S74</b> . DEPT spectrum of <b>8</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 40 |
| <b>Figure S75</b> . <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>8</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N) | 41 |
| <b>Figure S76</b> . HSQC spectrum of <b>8</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 41 |
| <b>Figure S77</b> . HMBC spectrum of <b>8</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 42 |
| <b>Figure S78</b> . HMBC spectrum of <b>8</b> (800 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                |    |
| <b>Figure S79</b> . NOESY spectrum of <b>8</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                               | 43 |
| Figure S80. IR spectrum of 9                                                                                               | 43 |
| Figure S81. (+)-HRESIMS data of 9                                                                                          | 44 |
| <b>Figure S82.</b> <sup>1</sup> H NMR spectrum of <b>9</b> (600 MHz, in $C_5D_5N$ )                                        | 44 |
| <b>Figure S83</b> . <sup>13</sup> C NMR spectrum of <b>9</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                 | 45 |
| <b>Figure S84</b> . DEPT spectrum of <b>9</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 45 |
| <b>Figure S85</b> . <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>9</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N) | 46 |

| <b>Figure S86</b> . HSQC spectrum of <b>9</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                   | 46 |
|-------------------------------------------------------------------------------------------------------------------------------|----|
| <b>Figure S87</b> . HMBC spectrum of <b>9</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                   | 47 |
| <b>Figure S88</b> . NOESY spectrum of <b>9</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                  | 47 |
| Figure S89. IR spectrum of 10                                                                                                 | 48 |
| Figure S90. (+)-HRESIMS data of 10                                                                                            | 48 |
| <b>Figure S91</b> . <sup>1</sup> H NMR spectrum of <b>10</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                    | 49 |
| Figure S92. <sup>13</sup> C NMR spectrum of <b>10</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                           | 49 |
| Figure S93. DEPT spectrum of 10 (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                                 | 49 |
| <b>Figure S94</b> . <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>10</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)   | 50 |
| <b>Figure S95</b> . HSQC spectrum of <b>10</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                  | 50 |
| <b>Figure S96</b> . HMBC spectrum of <b>10</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                  | 51 |
| <b>Figure S97</b> . NOESY spectrum of <b>10</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                 | 51 |
| Figure S98. IR spectrum of 11                                                                                                 | 52 |
| Figure S99. (+)-HRESIMS data of 11                                                                                            | 52 |
| Figure S100. <sup>1</sup> H NMR spectrum of 11 (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                  | 52 |
| <b>Figure S101</b> . <sup>13</sup> C NMR spectrum of <b>11</b> (125 MHz, in $C_5D_5N$ )                                       | 53 |
| Figure S102. DEPT spectrum of 11 (125 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                                | 53 |
| <b>Figure S103</b> . ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum of <b>11</b> (500 MHz, in C <sub>5</sub> D <sub>5</sub> N) | 54 |
| Figure S104. HSQC spectrum of 11(500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                                 | 54 |
| Figure S105. HMBC spectrum of 11 (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                                | 55 |
| <b>Figure S106</b> . NOESY spectrum of <b>11</b> (500 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 55 |
| Table S3. Crystal data and structure refinement for 11.                                                                       | 56 |
| Figure S107. IR spectrum of 12                                                                                                |    |
| Figure S108. (+)-HRESIMS data of 12                                                                                           | 57 |
| <b>Figure S109</b> . <sup>1</sup> H NMR spectrum of <b>12</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                   | 57 |
| <b>Figure S110</b> . <sup>13</sup> C NMR spectrum of <b>12</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                  |    |
| Figure S111. DEPT spectrum of 12 (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                                | 58 |
| Figure S112. <sup>1</sup> H- <sup>1</sup> H COSY spectrum of 12 (600 MHz, in $C_5D_5N$ )                                      | 59 |
| Figure S113. HSQC spectrum of 12 (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                                | 59 |
| Figure S114. HMBC spectrum of 12 (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                                | 60 |

| Figure S115. NOESY spectrum of 12 (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                              | 60 |
|------------------------------------------------------------------------------------------------------------------------------|----|
| Figure S116. IR spectrum of 13                                                                                               | 61 |
| Figure S117. (+)-HRESIMS data of 13                                                                                          | 61 |
| Figure S118. <sup>1</sup> H NMR spectrum of 13 (600 MHz, in $C_5D_5N$ )                                                      | 61 |
| <b>Figure S119</b> . <sup>13</sup> C NMR spectrum of <b>13</b> (150 MHz, in $C_5D_5N$ )                                      | 62 |
| Figure S120. DEPT spectrum of 13 (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                               | 62 |
| <b>Figure S121</b> . ${}^{1}$ H- ${}^{1}$ H COSY spectrum of <b>13</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)         | 63 |
| <b>Figure S122</b> . HSQC spectrum of <b>13</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 63 |
| <b>Figure S123</b> . HMBC spectrum of <b>13</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 64 |
| <b>Figure S124</b> . NOESY spectrum of <b>13</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                               | 64 |
| Figure S125. IR spectrum of 14                                                                                               | 65 |
| Figure S126. (+)-HRESIMS data of 14                                                                                          | 65 |
| <b>Figure S127</b> . <sup>1</sup> H NMR spectrum of <b>14</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                  | 65 |
| Figure S128. <sup>13</sup> C NMR spectrum of 14 (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 66 |
| <b>Figure S129</b> . DEPT spectrum of <b>14</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 66 |
| <b>Figure S130</b> . ${}^{1}$ H- ${}^{1}$ H COSY spectrum of <b>14</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)         | 67 |
| <b>Figure S131</b> . HSQC spectrum of <b>14</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 67 |
| <b>Figure S132</b> . HMBC spectrum of <b>14</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                |    |
| <b>Figure S133</b> . NOESY spectrum of <b>14</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                               | 68 |
| Table S4. Crystal data and structure refinement for 14                                                                       | 69 |
| Figure S134. IR spectrum of 15                                                                                               | 69 |
| Figure S135. (+)-HRESIMS data of 15                                                                                          | 70 |
| <b>Figure S136</b> . <sup>1</sup> H NMR spectrum of <b>15</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                  | 70 |
| <b>Figure S137</b> . <sup>13</sup> C NMR spectrum of <b>15</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                 | 71 |
| <b>Figure S138</b> . DEPT spectrum of <b>15</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 71 |
| <b>Figure S139</b> . <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>15</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N) | 72 |
| <b>Figure S140</b> . HSQC spectrum of <b>15</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 72 |
| <b>Figure S141</b> . HMBC spectrum of <b>15</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                | 73 |
| <b>Figure S142</b> . NOESY spectrum of <b>15</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                               | 73 |
| Figure S143. IR spectrum of 16.                                                                                              | 74 |
| U U                                                                                                                          |    |

| Figure S144. (+)-HRESIMS data of 16                                                                              | 74 |
|------------------------------------------------------------------------------------------------------------------|----|
| <b>Figure S145</b> . <sup>1</sup> H NMR spectrum of <b>16</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)      | 74 |
| <b>Figure S146</b> . <sup>13</sup> C NMR spectrum of <b>16</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)     | 75 |
| <b>Figure S147</b> . DEPT spectrum of <b>16</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                    | 75 |
| <b>Figure S148</b> . $^{1}$ H- $^{1}$ H COSY spectrum of <b>16</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N) | 76 |
| Figure S149. HSQC spectrum of 16 (600 MHz, in C <sub>5</sub> D <sub>5</sub> N                                    | 76 |
| Figure S150. HMBC spectrum of 16 (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                   | 77 |
| <b>Figure S151</b> . NOESY spectrum of <b>16</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                   | 77 |
| Figure S152. IR spectrum of 17                                                                                   | 78 |
| Figure S153. (+)-HRESIMS data of 17                                                                              | 78 |
| <b>Figure S154</b> . <sup>1</sup> H NMR spectrum of <b>17</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)      | 78 |
| <b>Figure S155</b> . <sup>13</sup> C NMR spectrum of <b>17</b> (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)     | 79 |
| Figure S156. DEPT spectrum of 17 (150 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                   | 79 |
| Figure S157. $^{1}$ H- $^{1}$ H COSY spectrum of 17 (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                | 80 |
| <b>Figure S158</b> . HSQC spectrum of <b>17</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                    | 80 |
| <b>Figure S159</b> . HMBC spectrum of <b>17</b> (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                    | 81 |
| Figure S160. NOESY spectrum of 17 (600 MHz, in C <sub>5</sub> D <sub>5</sub> N)                                  | 81 |
|                                                                                                                  |    |







Figure S7. IR spectrum of 1

MS Formula Results: + Scan (7.193 min) Sub (2015050501.d)

|   | m/a      | lon            | Formula           | Abundance |           |          |           |          |            |                |            |             |               |     |
|---|----------|----------------|-------------------|-----------|-----------|----------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
|   | 703.2568 | (M+Na)+        | C33 H44 Na O15    | 82303.1   |           |          |           |          |            |                |            |             |               |     |
| 1 | Best     | Formula (M)    | Ion Formula       | Score     | Cross Sco | M888     | Galc Mass | Carc m/z | UIIT (ppm) | Abs Ulff (ppm) | Mass Match | Abund Match | Spacing Match | UBE |
|   | P        | C33 H44 O15    | C33 H44 Na O15    | 99.72     |           | 680.2676 | 680.268   | 703.2572 | 0.64       | 0.64           | 99.99      | 99.24       | 99.75         | 1   |
|   | Ē        | C46 H36 N2 O4  | C46 H36 N2 Na O4  | 98.52     |           | 680.2676 | 680.2675  | 703.2567 | -0.13      | 0.13           | 100        | 95.1        | 99.67         | 3   |
|   | T        | C28 H44 N2 O17 | C28 H44 N2 Na O17 | 98.45     |           | 680.2676 | 680.264   | 703.2532 | -5.29      | 5.29           | 99.07      | 96.28       | 99.8          |     |
| - | Г        | C51 H36 O2     | C51 H35 Na O2     | 96.87     |           | 680.2676 | 680.2715  | 703.2608 | 5.8        | 5.8            | 98.88      | 91.24       | 99.63         | 3   |

Figure S8. (+)-HRESIMS data of 1



Figure S9. <sup>1</sup>H NMR spectrum of 1 (500 MHz, in  $C_5D_5N$ )



Figure S10. <sup>13</sup>C NMR spectrum of 1 (125 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S11. DEPT spectrum of 1 (125 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S12. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 1 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S13. HSQC spectrum of 1 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S14. HMBC spectrum of 1 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S15. NOESY spectrum of 1 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)

| Identification code                                                                  | exp_3806                                               |
|--------------------------------------------------------------------------------------|--------------------------------------------------------|
| Empirical formula                                                                    | C33H44O16                                              |
| Formula weight                                                                       | 696.68                                                 |
| Temperature/K                                                                        | 104.3                                                  |
| Crystal system                                                                       | triclinic                                              |
| Space group                                                                          | P1                                                     |
| a / Å, b / Å, c / Å                                                                  | 8.6705(4), 17.6150(9), 17.7494(7)                      |
| $\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$                                   | 64.166(4), 89.173(3), 76.713(4)                        |
| Volume/A <sup>3</sup>                                                                | 2638.3(2)                                              |
| Z                                                                                    | 3                                                      |
| $ ho_{calc}/mg mm^{-3}$                                                              | 1.315                                                  |
| $\mu/mm^{-1}$                                                                        | 0.894                                                  |
| F(000)                                                                               | 1110                                                   |
| Crystal size/mm <sup>3</sup>                                                         | 0.40	imes 0.26	imes 0.04                               |
| $2\Theta$ range for data collection                                                  | 9.1 to 142.46°                                         |
| Index ranges                                                                         | $-10 \le h \le 10, -22 \le k \le 22, -21 \le l \le 22$ |
| Reflections collected                                                                | 38245                                                  |
| Independent reflections                                                              | 16761[R(int) = 0.0353 (inf-0.9Å)]                      |
| Data/restraints/parameters                                                           | 16761/5/1364                                           |
| Goodness-of-fit on F <sup>2</sup>                                                    | 1.020                                                  |
| Final R indexes [I> $2\sigma$ (I) i.e. F <sub>o</sub> > $4\sigma$ (F <sub>o</sub> )] | $R_1 = 0.0444, wR_2 = 0.1138$                          |
| Final R indexes [all data]                                                           | $R_1 = 0.0467 \ wR_2 = 0.1165$                         |
| Largest diff. peak/hole/e Å <sup>-3</sup>                                            | 0.464/-0.446                                           |
| Flack Parameters                                                                     | 0.00(8)                                                |
| Completeness                                                                         | 0.983                                                  |
|                                                                                      |                                                        |

**Table S1.** Crystal data and structure refinement for 1



Figure S16. IR spectrum of 2





Figure S18. <sup>1</sup>H NMR spectrum of 2 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S19. <sup>13</sup>C NMR spectrum of 2 (125 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S20. DEPT spectrum of 2 (125 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S21. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 2 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S22. HSQC spectrum of 2 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S23. HMBC spectrum of 2 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S24. NOESY spectrum of 2 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S25. IR spectrum of 3

MS Formula Results: + Scan (6.357 min) Sub (2015052601.d)

| Г  |     | m/z             | lon            | Formula           | Abundance |                    |          |           |          |            |                |            |             |               |     |
|----|-----|-----------------|----------------|-------------------|-----------|--------------------|----------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
| =[ |     | 661.2467        | (M+Na)+        | C31 H42 Na O14    | 57921.8   | ]                  |          |           |          |            |                |            |             |               |     |
|    | Γ   | Best            | Formula (M)    | Ion Formula       | Score     | Cross Sco          | Mass     | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
|    | · 🗆 | 1004 g 🗭 100404 | C31 H42 O14    | C31 H42 Na O14    | 99.81     | en and and a state | 638.2575 | 638.2575  | 661.2467 | -0.08      | 0.08           | 100        | 99.87       | 99.37         |     |
|    | ۰Ľ  | -               | C32 H38 N4 O10 | C32 H38 N4 Na O10 | 99.59     |                    | 638.2575 | 638.2588  | 661.248  | 2          | 2              | 99.87      | 99.3        | 99.37         | 1   |
|    |     | -               | C27 H38 N5 O12 | C27 H38 N6 Na O12 | 99.42     |                    | 638.2575 | 638.2548  | 661.244  | -4.32      | 4.32           | 99.38      | 99.45       | 99.44         | 1   |
|    |     | -               | C20 H42 N6 O17 | C20 H42 N6 Na O17 | 97.74     |                    | 638.2575 | 638.2606  | 661.2499 | 4.88       | 4.88           | 99.21      | 93.8        | 99.51         |     |
|    | ÷Г  | -               | C44 H34 N2 O3  | C44 H34 N2 Na O3  | 97.03     |                    | 638.2575 | 638.2569  | 661.2462 | -0.89      | 0.89           | 99.97      | 90.28       | 99.23         | 2   |
|    | • 🗆 | 1               | C49 H34 O      | C49 H34 Na O      | 95.11     |                    | 638.2575 | 638.261   | 661.2502 | 5.42       | 5.42           | 99.03      | 85.2        | 99.17         | 3   |

Figure S26. (+)-HRESIMS data of 3



Figure S27. <sup>1</sup>H NMR spectrum of 3 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S28. <sup>13</sup>C NMR spectrum of 3 (150 MHz, in  $C_5D_5N$ )



Figure S29. DEPT spectrum of 3 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S30.  $^{1}$ H- $^{1}$ H COSY spectrum of 3 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S31. HSQC spectrum of 3 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S32. HMBC spectrum of 3 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S34. IR spectrum of 4

 MS Formula Results: + Scan (3.630 min) Sub (2016053006.d)

 mic
 formula
 Abundance

 415.1884
 (M+H)+
 C20161.09
 49113.2

 Best
 Formula (M-H)+
 C20161.09
 C0010
 Mass
 Calc Mess
 Calc Mess
 Calc Mess
 Abund Match
 Spacing Match

 v
 v
 C20160.09
 C20161.09
 601
 414.191
 414.189
 415.1965
 4.98
 99.31
 99.67
 99.68
 99.33

 v
 C21163.04 95
 C17163.08 5
 97.86
 414.191
 414.189
 415.1986
 3.15
 99.67
 93.68
 99.22

 v
 C21163.04 98
 C21163.04 82
 67.77
 414.1911
 414.1891
 415.1986
 3.15
 99.27
 92.42
 90.05

 v
 C21163.04 98
 C21163.04 82
 67.77
 414.1911
 414.1982
 415.29
 2.3
 99.72
 92.42
 90.05

 v
 C161.964.043
 C21163.04 82
 67.77
 414.1911
 414.1982
 415.29
 2.3
 99.72
 92.42

Figure S35. (+)-HRESIMS data of 4



Figure S36. <sup>1</sup>H NMR spectrum of 4 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S37. <sup>13</sup>C NMR spectrum of 4 (125 MHz, in  $C_5D_5N$ )



Figure S38. DEPT spectrum of 4 (125 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S39. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 4 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S40. HSQC spectrum of 4 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S41. HMBC spectrum of 4 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S42. NOESY spectrum of 4 (500 MHz, in  $C_5D_5N$ )



Figure S43. IR spectrum of 5

| m/z      | Ion           | Formula       | Abundance |                |           |          |            |                |            |             |               |     |
|----------|---------------|---------------|-----------|----------------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
| 457.2075 | (M+H)+        | C22 H33 O10   | 386179.8  |                |           |          |            |                |            |             |               |     |
| Best 9   | Formula (M)   | Ion Formula   | Score     | Cross Sco Mass | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
|          | C22 H32 O10   | C22 H33 O10   | 99,94     | 456.2002       | 456.1995  | 457.2068 | -1.37      | 1.37           | 99.94      | 99.95       | 99.91         | 7   |
| 5        | C23 H36 O5 S2 | C23 H37 O5 S2 | 97.56     | 456.2002       | 456,2004  | 457.2077 | 0.53       | 0.53           | 99.99      | 91.9        | 99.51         | 6   |
| Г        | C27 H36 S3    | C27 H37 S3    | 94.65     | 456.2002       | 456.1979  | 457.2052 | -4.96      | 4,96           | 99.17      | 83.14       | 99.42         | 10  |

Figure S44. (+)-HRESIMS data of 5



Figure S45. <sup>1</sup>H NMR spectrum of 5 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S46. <sup>13</sup>C NMR spectrum of 5 (150 MHz, in  $C_5D_5N$ )



Figure S47. DEPT spectrum of 5 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S48. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 5 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S49. HSQC spectrum of 5 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S50. HMBC spectrum of 5 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S51. NOESY spectrum of 5 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S52. IR spectrum of 6



Figure S53. (+)-HRESIMS data of 6



Figure S54. <sup>1</sup>H NMR spectrum of 6 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



**Figure S55**. <sup>13</sup>C NMR spectrum of 6 (150 MHz, in  $C_5D_5N$ )



Figure S56. DEPT spectrum of 6 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S57. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 6 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S58. HSQC spectrum of 6 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S59. HMBC spectrum of 6 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S60. NOESY spectrum of 6 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S61. IR spectrum of 7

| MS Formula Results | : + Scan (6.499 min) | Sub (2015091706.d) |
|--------------------|----------------------|--------------------|
|--------------------|----------------------|--------------------|

|      | miz      | lon            | Formula           | Abundance |           |          |           |          |            |                |            |             |               |     |
|------|----------|----------------|-------------------|-----------|-----------|----------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
| T    | 661.2478 | (M+Na)+        | C31 H42 Na O14    | 682556.8  |           |          |           |          |            |                |            |             |               |     |
|      | Busi     | Pormula (M)    | Ion Formula       | Score     | Cross Sco | Mass     | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
| ñ [] | 1        | C31 H42 O14    | C31 H42 Na O14    | 99.92     |           | 638.2585 | 638.2575  | 661.2467 | -1.7       | 1.7            | 99.9       | 99.98       | 99.89         | 11  |
| 6    | E .      | C32 H38 N4 O10 | C32 H38 N4 Na O10 | 99.83     |           | 638.2586 | 638.2588  | 661.248  | 0.38       | 0.38           | 100        | 99.49       | 99.92         | 16  |
|      | F        | C27 H38 N6 O12 | C27 H38 N6 Na O12 | 99.35     |           | 638.2586 | 638.2548  | 661.244  | -5.94      | 5.94           | 98.84      | 99.71       | 99.96         | 12  |
| 1    | F        | C20 H42 N6 O17 | C20 H42 N6 Na O17 | 98.11     |           | 638.2586 | 638.2606  | 661.2499 | 3.26       | 3.26           | 99.65      | 93.99       | 99.98         | 3   |
|      | F.       | C44 H34 N2 O3  | C44 H34 N2 Na O3  | 97.08     |           | 638.2585 | 638.2569  | 661.2462 | -2.51      | 2.51           | 99.79      | 90.25       | 99.85         | 29  |
| 8    | 10       | C49 H34 O      | C49 H34 Na O      | 95.45     |           | 638.2585 | 638.261   | 661.2502 | 3.8        | 3.8            | 99.52      | 85.02       | 99.82         | 33  |

Figure S62. (+)-HRESIMS data of 7



Figure S63. <sup>1</sup>H NMR spectrum of 7 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



**Figure S64**. <sup>13</sup>C NMR spectrum of **7** (125 MHz, in  $C_5D_5N$ )



Figure S65. DEPT spectrum of 7 (125 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S66. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 7 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)


Figure S67. HSQC spectrum of 7 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S68. HMBC spectrum of 7 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S69. NOESY spectrum of 7 (500 MHz, in  $C_5D_5N$ )

| Identification code                                                                  | exp_3590                                               |
|--------------------------------------------------------------------------------------|--------------------------------------------------------|
| Empirical formula                                                                    | C32H42O15.26177                                        |
| Formula weight                                                                       | 670.84                                                 |
| Temperature/K                                                                        | 102.8                                                  |
| Crystal system                                                                       | orhtorhombic                                           |
| Space group                                                                          | $P2_{1}2_{1}2_{1}$                                     |
| a / Å, b / Å, c / Å                                                                  | 12.7605(3), 15.5108(5), 16.9324(4)                     |
| $\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$                                   | 90, 90, 90                                             |
| Volume/A <sup>3</sup>                                                                | 3351.35(16)                                            |
| Z                                                                                    | 4                                                      |
| $\rho_{calc}/mg mm^{-3}$                                                             | 1.330                                                  |
| $\mu/mm^{-1}$                                                                        | 0.900                                                  |
| F(000)                                                                               | 1424                                                   |
| Crystal size/mm <sup>3</sup>                                                         | $0.450\times0.400\times0.400$                          |
| $2\Theta$ range for data collection                                                  | 7.73 to 141.822°                                       |
| Index ranges                                                                         | $-15 \le h \le 15, -17 \le k \le 16, -12 \le l \le 20$ |
| Reflections collected                                                                | 12021                                                  |
| Independent reflections                                                              | 6334[R(int) = 0.0234 (inf-0.9Å)]                       |
| Data/restraints/parameters                                                           | 6334/0/462                                             |
| Goodness-of-fit on F <sup>2</sup>                                                    | 1.031                                                  |
| Final R indexes [I> $2\sigma$ (I) i.e. F <sub>0</sub> > $4\sigma$ (F <sub>0</sub> )] | $R_1 = 0.0366, wR_2 = 0.0931$                          |
| Final R indexes [all data]                                                           | $R_1 = 0.0388 \ wR_2 = 0.0951$                         |
| Largest diff. peak/hole/e Å <sup>-3</sup>                                            | 0.199/-0.300                                           |
| Flack Parameters                                                                     | 0.04(7)                                                |
| Completeness                                                                         | 1.000                                                  |
|                                                                                      |                                                        |

 Table S2. Crystal data and structure refinement for 7



Figure S70. IR spectrum of 8

MS Formula Results: + Scan (6.106 min) Sub (2015070701.d)

|    | m/z      | Ion            | Formula           | Abundance |           |          |           |          |            |                |            |             |               |     |
|----|----------|----------------|-------------------|-----------|-----------|----------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
| -  | 603.2398 | (M+Na)+        | C29 H40 Na O12    | 176758    | ]         |          |           |          |            |                |            |             |               |     |
| 1  | Best     | Formula (M)    | ion Formula       | Score     | Cross Sco | Mass     | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
|    | N.       | C29 H40 O12    | C29 H40 Na O12    | 99.89     |           | 580.2506 | 580.252   | 603.2412 | 2.35       | 2.35           | 99.82      | 99.98       | 99.95         | 1   |
|    | T        | C25 H36 N5 O10 | C25 H36 N6 Na O10 | 99.77     |           | 580.2506 | 580.2493  | 603.2385 | -2.3       | 2.3            | 99.83      | 99.6        | 99.87         | 1   |
|    | Г        | C30 H36 N4 O8  | C30 H36 N4 Na O8  | 99.5      |           | 580.2506 | 580.2533  | 603.2425 | 4.64       | 4.64           | 99.3       | 99.48       | 99.91         | 1   |
| ÷. | T        | C24 H40 N2 O14 | C24 H40 N2 Na Q14 | 99.24     |           | 580.2506 | 580.248   | 603.2372 | -4.59      | 4.59           | 99.32      | 98.55       | 99.93         |     |
|    | T        | C37 H32 N4 O3  | C37 H32 N4 Na O3  | 97.93     |           | 580,2506 | 580.2474  | 603.2367 | -5.48      | 5.48           | 99.03      | 94.47       | 99.91         | 2   |
|    |          | C42 H32 N2 O   | C42 H32 N2 Na O   | 96.97     |           | 580.2506 | 580.2515  | 603.2407 | 1.46       | 1.46           | 99.93      | 89.57       | 99.91         | 2   |

Figure S71. (+)-HRESIMS data of 8



Figure S72. <sup>1</sup>H NMR spectrum of 8 (600 MHz, in  $C_5D_5N$ )



Figure S73. <sup>13</sup>C NMR spectrum of 8 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S74. DEPT spectrum of 8 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S75. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 8 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S76. HSQC spectrum of 8 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S77. HMBC spectrum of 8 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S78. HMBC spectrum of 8 (800 MHz, in C<sub>5</sub>D<sub>5</sub>N)





Figure S80. IR spectrum of 9

|     | m²z      | Ion                | Formula               | Abundance | 1         |          |           |          |            |                |            |             |               |     |
|-----|----------|--------------------|-----------------------|-----------|-----------|----------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
|     | 603.2417 | (M+Na)+            | C29 H40 Na O12        | 236158.1  | ]         |          |           |          |            |                |            |             |               |     |
| ſ   | Best     | Formula (M)        | Ion Formula           | Score     | Cross Sco | Mass     | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
|     | V        | C29 H40 O12        | C29 H40 Na O12        | 99.91     |           | 580.2525 | 580.252   | 603.2412 | -0.9       | 0.9            | 99.97      | 99.77       | 99.95         | 10  |
| i.  | 1        | C30 H36 N4 08      | C30 H36 N4 Na O8      | 99.59     |           | 580.2525 | 580.2533  | 603.2425 | 1.39       | 1.39           | 99.94      | 98.73       | 99.93         | 15  |
| ٥Ē  | F        | C25 H36 N6 O10     | C25 H36 N6 Na O10     | 99.46     |           | 580.2525 | 580.2493  | 603.2385 | -5.55      | 5,55           | 99         | 99.85       | 99.92         | 11  |
| 1   | E        | C18 H40 N6 O15     | C18 H40 N6 Na O15     | 98.26     |           | 580.2525 | 580.2552  | 603.2444 | 4.56       | 4.56           | 99.32      | 95.1        | 99.91         | 2   |
|     | Г        | C42 H32 N2 O       | C42 H32 N2 Na O       | 96.2      |           | 580.2525 | 580.2515  | 603.2407 | -1.79      | 1.79           | 99.9       | 86.94       | 99.91         | 28  |
| i.  | F        | C41 H37 CI O       | C41 H37 CI Na O       | 85.79     |           | 580.2525 | 580.2533  | 603.2425 | 1.36       | 1.36           | 99.94      | 50.87       | 99.39         | 23  |
|     | F        | C36 H37 CI N2 O3   | C36 H37 CI N2 Na O3   | 85.39     |           | 580.2525 | 580.2493  | 603.2385 | +5.58      | 5.58           | 98.99      | 51.12       | 99.31         | 19  |
| . ľ | Г        | C29 H41 CI N2 O8   | C29 H41 CI N2 Na O8   | 84.87     |           | 580.2525 | 580.2551  | 603.2444 | 4.55       | 4.55           | 99.33      | 48.8        | 99.22         | 10  |
| 1   | F        | C24 H41 CI N4 O10  | C24 H41 CI N4 Na O10  | 84.3      |           | 580.2525 | 580,2511  | 603.2403 | -2.4       | 2.4            | 99.81      | 46.08       | 99.13         | 6   |
| . 1 | r.       | C23 H45 CI O14     | C23 H45 CI Na O14     | 83.24     |           | 580.2525 | 580.2498  | 603.239  | -4.68      | 4.68           | 99.29      | 43.19       | 99.18         | 1   |
| . 1 | 100      | C35 H42 CI2 O3     | C35 H42 Cl2 Ne O3     | 76.35     |           | 580.2525 | 500.2511  | 603.2403 | -2.42      | 2.42           | 99.81      | 18.28       | 00.1          | 14  |
| . 1 | F        | C24 H42 CI2 N8 O6  | C24 H42 CI2 N6 Na O5  | 75.3      |           | 580.2525 | 580.2543  | 603.2435 | 3.05       | 3.05           | 99.7       | 14.93       | 98.93         | 6   |
| 1   | F        | C23 H45 CI2 N2 O10 | C23 H46 Cl2 N2 Na O10 | 75.06     |           | 580.2525 | 580.253   | 503.2422 | 0.77       | 0.77           | 99.98      | 13.59       | 98.98         | 1   |

Figure S81. (+)-HRESIMS data of 9



Figure S82. <sup>1</sup>H NMR spectrum of 9 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S83. <sup>13</sup>C NMR spectrum of 9 (150 MHz, in  $C_5D_5N$ )



Figure S84. DEPT spectrum of 9 (150 MHz, in  $C_5D_5N$ )



Figure S85. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 9 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S86. HSQC spectrum of 9 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S87. HMBC spectrum of 9 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S88. NOESY spectrum of 9 (600 MHz, in  $C_5D_5N$ )



Figure S89. IR spectrum of 10

MS Formula Results: + Scan (6.026 min) Sub (2015052002.d)

|     | m/z      | Ion            | Formula           | Abundance |           |          |           |          |            |                |            |             |               |     |
|-----|----------|----------------|-------------------|-----------|-----------|----------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
|     | 663.2618 | (M+Na)+        | C31 H44 Na O14    | 141701.8  |           |          |           |          |            |                |            |             |               |     |
| F   | Dest     | Formula (M)    | Ion Formula       | Score     | Cross Sco | Mass     | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Opacing Match | DDE |
| (4) | 2        | C31 H44 O14    | C31 H44 Na O14    | 99.92     |           | 640.2726 | 640.2731  | 663.2623 | 0.84       | 0.84           | 99.98      | 99.86       | 99.86         | 10  |
| ÷ [ | E        | C32 H40 N4 O10 | C32 H40 N4 Na O10 | 99.81     |           | 640.2726 | 640.2744  | 663.2637 | 2.91       | 2.91           | 99.72      | 99.89       | 99.9          | 15  |
|     | Г        | C27 H40 N6 O12 | C27 H40 N6 Na O12 | 99.58     |           | 640.2726 | 640.2704  | 663.2596 | -3.39      | 3.39           | 99.62      | 99.22       | 99.94         | 11  |
| -   | - F      | C26 H44 N2 O16 | C26 H44 N2 Na O16 | 98.87     |           | 640.2726 | 640.2691  | 663.2583 | -5.48      | 5.46           | 99.02      | 97.76       | 99.91         | 6   |
| ÷.  | F        | C44 H36 N2 O3  | C44 H36 N2 Na O3  | 97.78     |           | 640.2726 | 640.2726  | 663.2618 | 0.03       | 0.03           | 100        | 92.36       | 99.82         | 28  |
| 10  | E 1      | C20 H44 N6 O17 | C20 H44 N6 Na O17 | 97.18     |           | 640.2726 | 640.2763  | 663.2655 | 5.78       | 5.78           | 98.9       | 92          | 99.97         | 2   |

## Figure S90. (+)-HRESIMS data of 10



Figure S91. <sup>1</sup>H NMR spectrum of 10 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S92  $^{13}$ C NMR spectrum of 10 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S93. DEPT spectrum of 10 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S94. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 10 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S95. HSQC spectrum of 10 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S96. HMBC spectrum of 10 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S97. NOESY spectrum of 10 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S98. IR spectrum of 11

MS Formula Results: + Scan (6.407 min) Sub (2015061101.d)

|   | m/z     | lon            | Formula           | Abundance |           |          |           |          |            |                |            |             |               |     |
|---|---------|----------------|-------------------|-----------|-----------|----------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
|   | 661.246 | 9 (M+Na)+      | C31 H42 Na O14    | 84935.9   |           |          |           |          |            |                |            |             |               |     |
| 1 | Best    | Formula (M)    | Ion Formula       | Score     | Cross Sco | Mass     | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
|   | 12      | C31 H42 O14    | C31 H42 Na O14    | 99.91     |           | 638.2576 | 638.2575  | 661.2467 | -0.27      | 0.27           | 100        | 99,71       | 99.97         | 11  |
|   | T       | C32 H38 N4 O10 | C32 H38 N4 Na O10 | 99.9      |           | 638.2576 | 638.2588  | 661.248  | 1.81       | 1.81           | 99.89      | 99.85       | 99.99         | 16  |
|   |         | C27 H38 N6 O12 | C27 H38 N6 Na O12 | 99.32     |           | 638.2576 | 638.2548  | 661.244  | -4.51      | 4.51           | 99.33      | 98.75       | 99.99         | 12  |
| 6 | F       | C44 H34 N2 O3  | C44 H34 N2 Na O3  | 98.07     |           | 638.2576 | 638.2569  | 661.2462 | -1.08      | 1.08           | 99.96      | 93.32       | 99.97         | 29  |
|   | T       | C20 H42 N6 O17 | C20 H42 N6 Na O17 | 97.08     |           | 638.2577 | 638.2606  | 661.2499 | 4.68       | 4.68           | 99.28      | 91.02       | 99.98         | 3   |
|   | -       | C49 H34 O      | C49 H34 Na O      | 96.36     |           | 638.2576 | 638.261   | 661.2502 | 5.23       | 5.23           | 99.1       | 88.81       | 99.95         | 33  |

## Figure S99. (+)-HRESIMS data of 11



Figure S100. <sup>1</sup>H NMR spectrum of 11 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S101. <sup>13</sup>C NMR spectrum of 11 (125 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S102. DEPT spectrum of 11 (125 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S103. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 11 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S104. HSQC spectrum of  $11(500 \text{ MHz}, \text{ in } C_5D_5N)$ 



Figure S105. HMBC spectrum of 11 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S106. NOESY spectrum of 11 (500 MHz, in C<sub>5</sub>D<sub>5</sub>N)

| Identification code                                                                  | exp_3589                                               |
|--------------------------------------------------------------------------------------|--------------------------------------------------------|
| Empirical formula                                                                    | C32H48O16                                              |
| Formula weight                                                                       | 688.70                                                 |
| Temperature/K                                                                        | 102.8                                                  |
| Crystal system                                                                       | monoclinic                                             |
| Space group                                                                          | P21                                                    |
| a / Å, b / Å, c / Å                                                                  | 12.8374(3), 10.8913(3), 24.3599(6)                     |
| $\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$                                   | 90.00, 99.441(2), 90.00                                |
| Volume/A <sup>3</sup>                                                                | 3359.79(14)                                            |
| Z                                                                                    | 4                                                      |
| $ ho_{calc}/mg mm^{-3}$                                                              | 1.362                                                  |
| $\mu/mm^{-1}$                                                                        | 0.925                                                  |
| F(000)                                                                               | 1472                                                   |
| Crystal size/mm <sup>3</sup>                                                         | 0.17	imes 0.15	imes 0.05                               |
| $2\Theta$ range for data collection                                                  | 7.34 to 142.17°                                        |
| Index ranges                                                                         | $-15 \le h \le 15, -12 \le k \le 13, -29 \le l \le 29$ |
| Reflections collected                                                                | 28272                                                  |
| Independent reflections                                                              | 11987[R(int) = 0.0299 (inf-0.9Å)]                      |
| Data/restraints/parameters                                                           | 11987/1/883                                            |
| Goodness-of-fit on F <sup>2</sup>                                                    | 1.038                                                  |
| Final R indexes [I> $2\sigma$ (I) i.e. F <sub>o</sub> > $4\sigma$ (F <sub>o</sub> )] | $R_1 = 0.0592, wR_2 = 0.1599$                          |
| Final R indexes [all data]                                                           | $R_1 = 0.0635 \ wR_2 = 0.1658$                         |
| Largest diff. peak/hole/e Å <sup>-3</sup>                                            | 0.168/-0.616                                           |
| Flack Parameters                                                                     | -0.07(15)                                              |
| Completeness                                                                         | 0.990                                                  |

 Table S3. Crystal data and structure refinement for 11



Figure S107. IR spectrum of 12

| T   |   | m/z      | lon            | Formula           | Abundance | ·         |          |           |          |            |                |            |             |               |     |
|-----|---|----------|----------------|-------------------|-----------|-----------|----------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
| - [ | 1 | 647.2307 | (M+Na)+        | C30 H40 Na O14    | 178238.7  |           |          |           |          |            |                |            |             |               |     |
|     | Г | Best     | Formula (M)    | Ion Formula       | Score     | Cross Sco | Mass     | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
|     |   | 14       | C30 H40 O14    | C30 H40 Na O14    | 99.95     |           | 624.2415 | 624.2418  | 647,231  | 0.55       | 0.55           | 99.99      | 99.95       | 99.87         |     |
|     |   | T        | C26 H36 N6 O12 | C26 H36 N6 Na O12 | 99,69     |           | 624.2415 | 624.2391  | 647.2283 | -3.77      | 3.77           | 99.53      | 99.78       | 99.92         |     |
|     |   | F        | C31 H36 N4 O10 | C31 H36 N4 Na O10 | 99.67     | 1         | 624.2415 | 624.2431  | 647.2324 | 2.68       | 2.68           | 99.76      | 99.31       | 99.91         |     |
|     |   | 100      | C25 H48 N2 O18 | C25 H40 N2 Na O16 | 99.13     | 2         | 824.2415 | 624.2378  | 647.227  | -5.9       | 5.9            | 98.86      | 98.97       | 99.88         |     |
|     |   | F        | C19 H40 N6 O17 | C19 H40 N6 Na O17 | 97.83     |           | 624.2415 | 624.245   | 647.2342 | 5.63       | 5.63           | 98.96      | 94.24       | 99.9          | -   |
|     |   | F        | C43 H32 N2 O3  | C43 H32 N2 Na O3  | 96.89     |           | 624.2415 | 624.2413  | 647.2305 | -0.28      | 0.28           | 100        | 89.21       | 99.9          |     |

Figure S108. (+)-HRESIMS data of 12



Figure S109. <sup>1</sup>H NMR spectrum of 12 (600 MHz, in  $C_5D_5N$ )



Figure S110. <sup>13</sup>C NMR spectrum of 12 (150 MHz, in  $C_5D_5N$ )



Figure S111. DEPT spectrum of 12 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S112. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 12 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S113. HSQC spectrum of 12 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S114. HMBC spectrum of 12 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S115. NOESY spectrum of 12 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S116. IR spectrum of 13

| MS Formula Results: + | Scan | (5.911 min)                           | Sub | (2016090607.d) |
|-----------------------|------|---------------------------------------|-----|----------------|
|                       |      | · · · · · · · · · · · · · · · · · · · |     |                |

|   |    | miz      | Ion               | Formula              | Abundance |           |          |           |          |            |                |            |             |               |     |
|---|----|----------|-------------------|----------------------|-----------|-----------|----------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
| 8 |    | 619 2355 | (M+Na)+           | C29 H40 Na O13       | 10844 9   |           |          |           |          |            |                |            |             |               |     |
|   | Г  | Best     | Formula (M)       | Ion Formula          | Score     | Cross Sco | Mass     | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
|   |    | V        | C29 H40 O13       | C29 H40 Na O13       | 99.48     |           | 596.2463 | 596.2469  | 619.2361 | 1.03       | 1.03           | 99.97      | 99.65       | 98.31         | 10  |
|   |    | T I      | C24 H40 N2 O15    | C24 H40 N2 Na O15    | 98,78     |           | 596.2463 | 596.2429  | 619,2321 | -5.73      | 5.73           | 98.93      | 99.01       | 98.21         | 6   |
|   |    | 17       | C33 H40 O8 S      | C33 H40 Na O8 S      | 97.9      |           | 596.2463 | 596.2444  | 619.2336 | -3.17      | 3.17           | 99.67      | 95.58       | 97.13         | 14  |
|   |    | E F      | C21 H44 N2 O15 S  | C21 H44 N2 Na O15 S  | 97.59     |           | 596.2483 | 596.2462  | 619.2355 | -0.08      | 0.08           | 100        | 94.36       | 96.62         | 1   |
|   | +  | T        | C30 H44 O8 S2     | C30 H44 Na O8 S2     | 96.57     |           | 595.2463 | 596.2478  | 619.237  | 2.47       | 2.47           | 99.8       | 91.46       | 96.22         | 9   |
|   | +  | 17       | C25 H44 N2 O10 S2 | C25 H44 N2 Na O10 S2 | 96.35     |           | 596.2463 | 596.2437  | 619.233  | -4.28      | 4.28           | 99.4       | 91.55       | 95.99         | 5   |
|   | +  | E        | C42 H32 N2 O2     | C42 H32 N2 Na O2     | 96.08     |           | 596.2463 | 596.2464  | 619.2356 | 0.16       | 0.16           | 100        | 87.53       | 98.51         | 28  |
|   |    | T        | C39 H36 N2 O2 3   | C39 H36 N2 Net O2 3  | 95.92     |           | 598.2483 | 596.2497  | 619.239  | 5.81       | 5.B1           | 98.9       | 89.77       | 97.36         | 23  |
|   |    | T        | C34 H44 O3 S3     | C34 H44 Na O3 S3     | 94.07     |           | 596.2463 | 596.2453  | 519.2345 | -1.73      | 1.73           | 99.9       | 82.8        | 95.91         | 1:  |
|   | 41 | -        | C22 H48 N2 O10 S3 | C22 H48 N2 Na O10 S3 | 93.8      |           | 596.2463 | 596.2471  | 619.2363 | 1.36       | 1.36           | 99.94      | 82.22       | 95.41         | (   |



Figure S118. <sup>1</sup>H NMR spectrum of 13 (600 MHz, in  $C_5D_5N$ )



Figure S119. <sup>13</sup>C NMR spectrum of 13 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S120. DEPT spectrum of 13 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S121.  $^{1}$ H- $^{1}$ H COSY spectrum of 13 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S122. HSQC spectrum of 13 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S123. HMBC spectrum of 13 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S124. NOESY spectrum of  $13 (600 \text{ MHz}, \text{ in } C_5 D_5 N)$ 



Figure S125. IR spectrum of 14

| MS Formula Results: + Scan (5.946 min) | Sub (2015060902.d) |
|----------------------------------------|--------------------|
|----------------------------------------|--------------------|

| Γ | m/2 | z        | lon            | Formula           | Abundance |           |         |           |          |            |                |            |             |               |     |
|---|-----|----------|----------------|-------------------|-----------|-----------|---------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
| C |     | 679.2572 | (M+Na)+        | C31 H44 Na O15    | 428769.7  | 1         |         |           |          |            |                |            |             |               |     |
|   | Be  | est      | Formula (M)    | Ion Formula       | Score     | Cross Sco | Mass    | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
| ż |     | 1        | C31 H44 O15    | C31 H44 Na O15    | 99.93     |           | 656.268 | 656.268   | 679.2572 | 0.1        | 0.1            | 100        | 99.86       | 99.88         | 10  |
| é |     | F        | C32 H40 N4 O11 | C32 H40 N4 Na O11 | 99.85     |           | 656.268 | 656.2694  | 679.2586 | 2.12       | 2.12           | 99.85      | 99.8        | 99.92         | 15  |
| į |     | <b></b>  | C27 H40 N6 O13 | C27 H40 N6 Na O13 | 99.48     |           | 656.268 | 656.2653  | 679.2546 | -4.02      | 4.02           | 99.46      | 99.11       | 99.96         | 11  |
| ÷ |     | 17       | C44 H35 N2 O4  | C44 H35 N2 Na O4  | 97.81     |           | 656.268 | 656.2675  | 679.2567 | -0.69      | 0.69           | 99.98      | 92.5        | 99.86         | 28  |
| ż |     | 1        | C20 H44 N6 O18 | C20 H44 N6 Na O18 | 97.34     |           | 856 268 | 656 2712  | 679 2604 | 4 92       | 4 92           | 99.2       | 92.03       | 88 88         | 1   |
|   |     | T        | C45 H32 N6     | C45 H32 N6 Na     | 97.05     |           | 656.268 | 656.2688  | 679.2581 | 1.33       | 1.33           | 99.94      | 89.86       | 99.9          | 33  |
| ÷ |     | 17       | C49 H35 O2     | C49 H36 Na O2     | 95        |           | 656.268 | 656.2715  | 679.2608 | 5.45       | 5.45           | 99.02      | 87.8        |               | 33  |

Figure S126. (+)-HRESIMS data of 14



Figure S127. <sup>1</sup>H NMR spectrum of 14 (600 MHz, in  $C_5D_5N$ )



Figure S128. <sup>13</sup>C NMR spectrum of 14 (150 MHz, in  $C_5D_5N$ )



Figure S129. DEPT spectrum of 14 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S130. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 14 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S131. HSQC spectrum of 14 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S132. HMBC spectrum of 14 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S133. NOESY spectrum of 14 (600 MHz, in  $C_5D_5N$ )

| Identification code                                                                  | exp_3672                                              |
|--------------------------------------------------------------------------------------|-------------------------------------------------------|
| Empirical formula                                                                    | C31H46O16                                             |
| Formula weight                                                                       | 674.68                                                |
| Temperature/K                                                                        | 102.3                                                 |
| Crystal system                                                                       | orthorhombic                                          |
| Space group                                                                          | $P2_12_12_1$                                          |
| a / Å, b / Å, c / Å                                                                  | 11.0687(2), 12.2272(4), 23.8020(5)                    |
| $\alpha/^{\circ}, \beta/^{\circ}, \gamma/^{\circ}$                                   | 90.00, 90.00, 90.00                                   |
| Volume/A <sup>3</sup>                                                                | 3221.34(15)                                           |
| Z                                                                                    | 4                                                     |
| $ ho_{calc}/mg mm^{-3}$                                                              | 1.391                                                 |
| $\mu/mm^{-1}$                                                                        | 0.954                                                 |
| F(000)                                                                               | 1440                                                  |
| Crystal size/mm <sup>3</sup>                                                         | $0.15\times0.14\times0.12$                            |
| $2\Theta$ range for data collection                                                  | 7.42 to 142.62°                                       |
| Index ranges                                                                         | $-13 \le h \le 8, -14 \le k \le 14, -28 \le l \le 22$ |
| Reflections collected                                                                | 11345                                                 |
| Independent reflections                                                              | 6114[R(int) = 0.0316 (inf-0.9Å)]                      |
| Data/restraints/parameters                                                           | 6114/0/435                                            |
| Goodness-of-fit on F <sup>2</sup>                                                    | 1.051                                                 |
| Final R indexes [I> $2\sigma$ (I) i.e. F <sub>o</sub> > $4\sigma$ (F <sub>o</sub> )] | $R_1 = 0.0480, wR_2 = 0.1234$                         |
| Final R indexes [all data]                                                           | $R_1 = 0.0512 \ wR_2 = 0.1273$                        |
| Largest diff. peak/hole/e Å <sup>-3</sup>                                            | 0.456/-0.250                                          |
| Flack Parameters                                                                     | 0.04(16)                                              |
| Completeness                                                                         | 0.987                                                 |

Table S4. Crystal data and structure refinement for 14



Figure S134. IR spectrum of 15

|     | m/z.           | lon            | Formula           | Abundance |           |         |           |          |            |                |            |             |               |     |
|-----|----------------|----------------|-------------------|-----------|-----------|---------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
|     | 679.2572       | (M+Na)+        | C31 H44 Na O15    | 208514.9  |           |         |           |          |            |                |            |             |               |     |
|     | Best           | Formula (M)    | Ion Formula       | Score     | Cross Sco | Mass    | Celc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
| i e | V              | C31 H44 O15    | C31 H44 Na O15    | 99.9      |           | 656.268 | 656.268   | 679.2572 | 0.09       | 0.09           | 100        | 99.76       | 99.85         |     |
|     | F 1            | C32 H40 N4 O11 | C32 H40 N4 Na O11 | 9.66      |           | 656.268 | 658.2694  | 879 2586 | 2.11       | 2.11           | 99.85      | 98.96       | 99.88         |     |
|     | T              | C27 H40 N6 O13 | C27 H40 N6 Na O13 | 99.58     |           | 656.268 | 656.2653  | 679.2546 | -4.03      | 4.03           | 99.46      | 99.49       | 99.92         |     |
| 14  | 1 <sup>m</sup> | C20 H44 N6 O18 | C20 H44 N5 Na O18 | 98.06     |           | 656.268 | 656.2712  | 679.2604 | 4.91       | 4.91           | 99.2       | 94.6        | 99.95         |     |
| ÷   | E F            | C44 H36 N2 O4  | C44 H36 N2 Na O4  | 96.98     |           | 656.268 | 656.2675  | 679.2567 | -0.7       | 0.7            | 99.98      | 89.3        | 99.79         |     |
|     | F              | C45 H32 N6     | C45 H32 N6 Na     | 96        |           | 656.268 | 656.2688  | 679.2581 | 1.33       | 1,33           | 99.94      | 86.25       | 99.82         |     |
| 4   |                | C49 H36 O2     | C49 H36 Na O2     | 94.93     |           | 656.268 | 656.2715  | 679.2608 | 5.43       | 5.43           | 99.02      | 84.11       | 99.74         |     |

Figure S135. (+)-HRESIMS data of 15



Figure S136. <sup>1</sup>H NMR spectrum of 15 (600 MHz, in  $C_5D_5N$ )



Figure S137. <sup>13</sup>C NMR spectrum of 15 (150 MHz, in  $C_5D_5N$ )



Figure S138. DEPT spectrum of 15 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S139. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 15 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S140. HSQC spectrum of  $15 (600 \text{ MHz}, \text{ in } C_5 D_5 N)$


Figure S141. HMBC spectrum of 15 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S142. NOESY spectrum of 15 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S143. IR spectrum of 16

|     | m/z      | lon           | Formula       | Abundance |           |         |           |          |            |                |            |             |               |     |
|-----|----------|---------------|---------------|-----------|-----------|---------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
|     | 417.2123 | (M+H)+        | C20 H33 O9    | 841007.5  | ]         |         |           |          |            |                |            |             |               |     |
|     | Best     | Formula (M)   | Ion Formula   | Score     | Cross Sco | Mass    | Calc Mass | Calc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
| ÷   | 1        | C20 H32 O9    | C20 H33 O9    | 99.96     |           | 416.205 | 416.2046  | 417.2119 | -0.95      | 0.95           | 99.97      | 99.92       | 99.97         | 5   |
| 140 | F 1      | C21 H36 O4 S2 | C21 H37 O4 S2 | 97.31     |           | 416.205 | 416.2055  | 417.2128 | 1.13       | 1.13           | 99.96      | 90.91       | 99.69         | 4   |

Figure S144. (+)-HRESIMS data of 16



Figure S145. <sup>1</sup>H NMR spectrum of 16 (600 MHz, in  $C_5D_5N$ )



Figure S146. <sup>13</sup>C NMR spectrum of 16 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S147. DEPT spectrum of 16 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S148. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 16 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S149. HSQC spectrum of 16 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S150. HMBC spectrum of 16 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S151. NOESY spectrum of 16 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S152. IR spectrum of 17

MS Formula Results: + Scan (2.928 min) Sub (2016111703.d)

|   | m/z      | Ion           | Formula       | Abundance |           |          |           |          |            |                |            |             |               |     |
|---|----------|---------------|---------------|-----------|-----------|----------|-----------|----------|------------|----------------|------------|-------------|---------------|-----|
|   | 433.2065 | (M+H)+        | C20 H33 O10   | 281379.6  |           |          |           |          |            |                |            |             |               |     |
|   | Best V   | Formula (M)   | Ion Formula   | Score     | Cross Sco | Mass     | Calc Mass | Celc m/z | Diff (ppm) | Abs Diff (ppm) | Mass Match | Abund Match | Spacing Match | DBE |
| ÷ | ×        | C20 H32 O10   | C20 H33 O10   | 99.95     |           | 432.1992 | 432.1995  | 433.2068 | 0.72       | 0.72           | 99.98      | 99.85       | 100           |     |
| ÷ | Г        | C241132 O5 C  | C241103 O5 6  | 98.3      |           | 432.1992 | 432.197   | 433.2043 | -5.07      | 5.07           | 00.14      | 06.68       | 00.76         |     |
| ŝ | F        | C21 H36 O5 S2 | C21 H37 O5 S2 | 97.43     |           | 432.1992 | 432.2004  | 433.2077 | 2.72       | 2.72           | 99.75      | 91.86       | 99.46         |     |
|   | -        | C25 H36 S3    | C25 H37 S3    | 94.73     |           | 432,1992 | 432.1979  | 433.2052 | -3.07      | 3.07           | 99.69      | 82.63       | 99.35         |     |

Figure S153. (+)-HRESIMS data of 17



Figure S154. <sup>1</sup>H NMR spectrum of 17 (600 MHz, in  $C_5D_5N$ )



Figure S155. <sup>13</sup>C NMR spectrum of 17 (150 MHz, in  $C_5D_5N$ )



Figure S156. DEPT spectrum of 17 (150 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S157. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 17 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S158. HSQC spectrum of 17 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S159. HMBC spectrum of 17 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)



Figure S160. NOESY spectrum of 17 (600 MHz, in C<sub>5</sub>D<sub>5</sub>N)