Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Effects of goethite on the fractions of Cu, Cd, Pb, P and soil enzyme activity with

hydroxyapatite in a heavy metal-contaminated soil

Hongbiao Cui^{1, 2*}, Xiong Yang¹, Lei Xu^{2, 3}, Yuchao Fan¹, Qitao Yi^{1*}, Ruyan Li¹, Jing Zhou^{2*}

- 1. School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
- 2. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy Sciences, Nanjing 210008, China

3. College of Environmental Science and Tourism, NanYang Normal University, NanYang 473000, China

*Corresponding author. Tel: +86 15215546045; +86 25 86881632

E-mail address: yiqitao@163.com (Q. Yi); zhoujing@issas.ac.cn (J. Zhou).

Table of contents									
Fest S1. Simplified bioaccessibility extraction test (SBET) procedure									
Fest S2. Soil Cu, Cd and Pb sequential extraction procedure									
Test S3. Soil P sequential extraction procedure									
Fig. S1. The TEM imaging of hydroxyapatite (HAP)									
Fig. S2. Powder X-ray diffraction patterns of hydroxyapatite									
Fig. S3. The TEM imaging of goethite									
Fig. S4. Powder X-ray diffraction patterns of goethite.									
Fig. S5. Effects of HAP and goethite applications on percentage of Cu (A), Cd (B), and									
Pb (C).									
Fig. S6. Effects of HAP and goethite applications on the concentrations of									
bioaccessible Cu, Cd, and Pb.									
Table S1. Correlation coefficients between various extractable heavy metal									

concentrations and microbial activities

Text S1. Simplified bioaccessibility extraction test (SBET) procedure

Briefly, a gastric solution was prepared by dissolving 1.25 g of pepsin, 0.5 g sodium citrate, 0.5 g sodium malate, 500 μ L acetic acid and 420 μ L lactic acid in 1 L Milli-Q water with the pH adjusted to 2.5 using 12 mol L⁻¹ HCl. About 0.4 g of soil sample was extracted using 40 mL of the gastric solution (solid:fluid = 1:100) in a 100 mL polypropylene centrifuge tube with shaking (37 °C) for 1 h. The pH of the extraction solution was measured every 30 min using a pH meter and, if needed, adjusted using 12 mol L⁻¹ HCl or saturated NaHCO₃ solution to maintain a constant pH (1.5). After 1 h, the extractants were centrifuged (2810×g for 10 min), and 20 mL supernatant was directly taken from each tube and filtered through 0.45 µm filters (Whatman 1) as a stomach phase. They were stored at 4°C and analyzed within 48 h.

Text S2. Soil Cu, Cd and Pb sequential extraction procedure

A sequential extraction procedure modified from the method of Tessier et al. (1979) was described as follows:

(1). Exchangeable fraction: 16 mL magnesium chloride (l mol L⁻¹ MgCl₂, pH=7) was added in a 100-mL polypropylene centrifuge tube containing 2±0.0001 g of soil sieved through a 0.15-mm mesh. The tube was shaken for 2 h at 25±1 °C on an end-over mechanical shaker operating at 120 rpm. After equilibration, the suspension was centrifuged at 4,000 rpm for 10 min. The supernatant was decanted and filtered through a 0.45-µm filter and transferred into a polyethylene container and stored at 4 °C until analysis.

(2). Bound to carbonates: The residue from (1) was shaken with 16 mL mol L⁻¹ sodium acetate (CH₃COONa), with pH adjusted to 5.0 with acetic acid (CH₃COOH). The tube was shaken for 3 h at 25 ± 1 °C, and the extraction procedure was the same as in (1).

(3). Bound to Fe–Mn oxides: The residue from (2) was shaken with 40 mL hydroxylamine hydrochloride (0.04 mol L⁻¹, NH₂OH·HCl) in 25 % (v/v) CH₃COOH. The tube was heated to 96±3 °C in a water bath for 6 h, and the extraction procedure was the same as in (1).

(4). Bound to organic matter fraction: 6 mL nitric acid (0.02 mol L⁻¹, HNO₃) and 10 mL hydrogen peroxide (30 % H₂O₂, acidified to pH 2 with HNO₃) were added into the residue from (3), and the mixture was heated to 85 ± 2 °C for 2 h in a water bath. Then, 6 mL H₂O₂ (30 %, acidified to pH 2 with HNO₃) was added, and the sample was heated again to 85 ± 2 °C for 3 h. After cooling, 10 mL ammonium acetate (3.2 mol L⁻¹, CH₃COONH₄) in 20 % (v/v) HNO3 was added at 25 ± 1 °C for 30 min. The extraction procedure was the same as in (1).

(5). Residual fraction: The difference between the total and non-residual fractions was regarded as the residual fraction. Each fraction of the certified reference material was analyzed in triplicate. The residual fraction of the certified reference material was analyzed by digestion with HNO_3 –HF–HClO₄ (5:10:5 mL). The sum of concentrations of Cu and Cd in different fractions was compared with the concentrations obtained by total digestion. The accuracy ranged between 83 % and 116 %. Therefore, the difference between the total and non-residual fractions was called the residual fraction.

Text S3. Soil P sequential extraction procedure

A sequential extraction method for phosphrous fractions modified from the method of Tiessen and Moir (1993): (1) labile resin-P, 0.5 g air-dried soil was extracted with deionized water and one anionexchange resin strip; (2) labile inorganic NaHCO₃-P (NaHCO₃-Pi) and organic NaHCO₃-P (NaHCO₃-Po) were extracted with 0.5 mol L⁻¹ NaHCO₃ at pH = 8.5; (3) moderately labile inorganic NaOH-P (NaOH-Pi) and organic NaOH-P (NaOH-Po) were extracted with NaOH (0.1 mol L⁻¹); (4) stable HCl-P was extracted with HCl (1 mol L⁻¹); (5) stable residual P was measured after the remaining soil digested with H₂SO₄/H₂O₂.

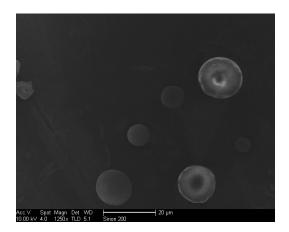


Fig. S1. The TEM imaging of hydroxyapatite (HAP)

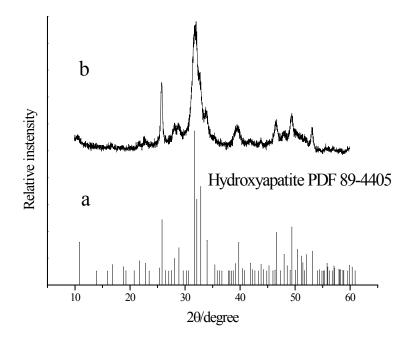


Fig. S2. Powder X-ray diffraction patterns of hydroxyapatite.

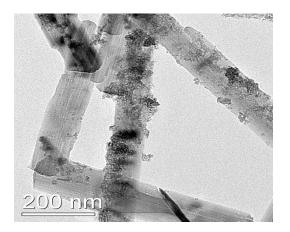


Fig. S3. The TEM imaging of goethite

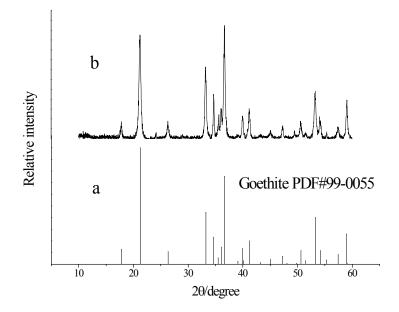
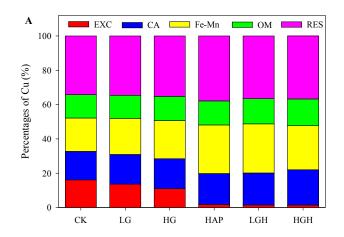
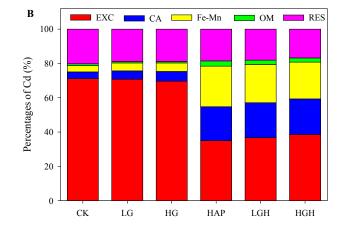
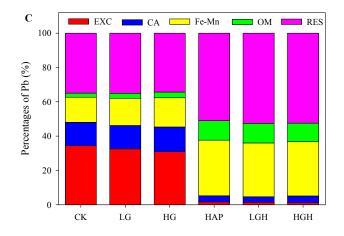





Fig. S4. Powder X-ray diffraction patterns of goethite.

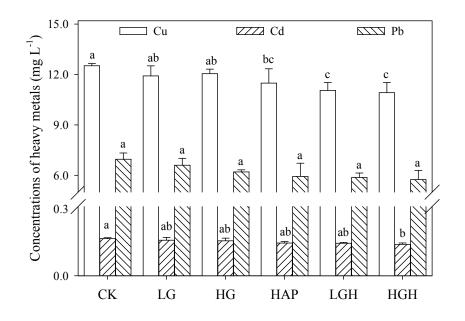

Fig. S5. Effects of HAP and goethite applications on percentage of Cu (A), Cd (B), and Pb (C). CK=untreated soil, LG=0.5% goethite plus soil, HG=1% goethite plus soil, HAP=1% HAP plus soil, LGH=0.5% goethite and 1% HAP plus soil, HGH=1% goethite and 1% HAP plus soil. Means (n = 3) followed by different letters above the columns indicated significant difference at the P < 0.05 Error bars are standard error of the mean.

Fig. S6. Effects of HAP and goethite applications on the concentrations of bioaccessible Cu, Cd, and Pb. CK=untreated soil, LG=0.5% goethite plus soil, HG=1% goethite plus soil, HAP=1% HAP plus soil, LGH=0.5% goethite and 1% HAP plus soil, HGH=1% goethite and 1% HAP plus soil. Means (n = 3) followed by different letters above the columns indicated significant difference at the *P* < 0.05 Error bars are standard error of the mean.

	pН	Catalase	Urease	Phosphatase	Ca-Cu	Ca-Cd	Ca-Pb	EXC-Cu	EXC-Cd	EXC-Pb	Resin-P	NaHCO ₃ -Pi
pН	1											
Catalase	0.965**	1										
Urease	0.966**	0.947**	1									
Phosphatase	0.997**	0.973**	0.969**	1								
Ca-Cu	-0.981**	-0.946**	-0.948**	-0.978**	1							
Ca-Cd	-0.969**	-0.969**	-0.954**	-0.973**	0.968**	1						
Ca-Pb	-0.990**	-0.940**	-0.952**	-0.984**	0.993**	0.954**	1					
EXC-Cu	-0.995**	-0.966**	-0.965**	-0.993**	0.989**	0.984**	0.990**	1				
EXC-Cd	-0.971**	-0.963**	-0.978**	-0.946**	0.951**	0.994**	0.937**	0.974**	1			
EXC-Pb	-0.974**	-0.971**	-0.957**	-0.978**	0.969**	0.999**	0.958**	0.987**	0.996**	1		
Resin-P	0.905**	0.880**	0.911**	0.904**	-0.909**	-0.964**	-0.891**	-0.930**	-0.953**	-0.963**	1	
NaHCO ₃ -Pi	0.643*	0.634*	0.650*	0.648*	-0.654*	-0.760**	-0.618*	-0.678*	-0.761**	-0.760**	0.876**	1

Table S1. Correlation coefficients between various extractable heavy metal concentrations and microbial activities (n=5).

Ca-Cu, CaCl₂-extractable Cu; Ca-Cd, CaCl₂-extractable Cd; Ca-Pb, CaCl₂-extractable Pb; EXC-Cu, exchangeable fraction of Cu; EXC-Cd, exchangeable fraction of

Cd; EXC-Pb, exchangeable fraction of Pb;

* Significant at *P*<0.05.

** Significant at *P*<0.01.