Supplementary Materials

Photocatalytic Degradation of Norfloxacin on Different TiO2-X Polymorphs under Visible Light in Water

Hai Yang^{a,b}, Liangyong Mei^b, Pengcheng Wang^b, Joseph Genereux^b, Yinsheng Wang^b, Bing Yi^a, Chaktong Au^a, Limin Dang^a, Pingyun Feng^{b*}

^aCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, PR China ^bDepartment of Chemistry, University of California, Riverside, California 92521, United States

^{*}Corresponding author.pingyun.feng@ucr.edu

Preparation of different TiO_{2-x}polymorps

Preparation of Cat.I-A: The synthetic procedure of Cat.I-A was reported elsewhere [1]. Typically, 0.7 g of L-ascorbic acid was added to 70 mL of deionized water, and the mixture was stirred for 10 min using a magnetic stirrer. Subsequently, 3.1 mL of TiCl₃ was added and a purple solution was formed. Then, NaOH solution (1 mol/L) was added to raise the pH to 4. After stirring for another 30 min, the as-resulted mixture was transferred to a 100 mL Teflon-lined stainless steel autoclave and heated at 180 °C for 12 h. The obtained precipitate was collected by centrifugation, rinsed with water and ethanol for several times. After drying at 80°C overnight, the sample was obtained without further treatment.

Preparation of Cat.II-R: The method was reported elsewhere [2]. Typically, titanium powder (0.300 g) and hydrochloric acid (10 mL, 2 mol/L) were mixed in a 50 mL pyrex beaker and magnetically stirred for 15 min. The mixture was then transferred to a Teflon-lined stainless-steel autoclave (23 mL capacity) and hydrothermally treated for 12 h at 220°C. The sample was then collected and washed three times with distilled water and ethanol.

Preparation of Cat.III-B: In a typical synthetic process [3], TiH₂(0.256 g) and H₂O (2 mL) were mixed in a 50 mL round-bottomed flask, and the mixture was magnetically stirred for 5 min for the generation of a dark gray suspension. Then H₂O₂(30 mL, 30.0 wt%) as an oxidation agent was added dropwise, and the asobtained mixture was vigorously stirred for 12 h to reach a yellowish gel-like state. After that, double distilled water (40 mL) was added under continuous magnetic stirring. As pH regulator, a certain amount of NaOH (1.0 M) solution was added gradually until the pH of this transparent solution which was light yellow in color reached 9.0. As a reducing agent, NaBH₄(0.4 g) was added and the mixture was immediately transferred to a Teflon-lined stainless-steel autoclave and hydrothermally treated at 180°C for 24 h. The harvested material was then immerged in HCl (50.0 mL, 1.0 M) solution to eliminate the sodium boron compound. After 10 h of stirring, the powder was separated and was washed with distilled water and ethanol repetitively to

remove impurities such as Na⁺, Cl⁻, and BO₃²⁻. The as-obtained precipitate was dried under vacuum for 12 h to yield TiO₂nanocrystals in the form of grey blue powder. Post annealing of the TiO_{2-x} sample was conducted in a flow of argon using a tube furnace at 500 °C for 3 h to generate the Cat.III-B sample.

Preparation of Cat.IV-A&R: In a typical synthetic procedure [4], ethanol (10.00 g), 2-ethylimidazole (0.1-1.80 g), and hydrochloric acid (2.50 g) were mixed in a 50 mL pyrex beaker and magnetically stirred for 15 min to generate a clear solution. Then titanium (IV) isopropoxide (2.00g) was added dropwise, and the resulted mixture was stirred for another 15 min. The beaker with its content was then placed in a preheated oven (500 °C) for the contentto undergo combustion. After 5 h, Cat IV was obtained with no further treatment. Different amounts of 2-ethylimidazole were used correspondingly to synthesize a variety of catalysts, i.e. 1.8 g for Cat.IV-1, 1.0 g for Cat.IV-2, 0.3 g for Cat.IV-3 and 0.1 g for Cat.IV-4.

Reference

- [1] M.W. Shah, Y.Q. Zhu, X.Y. Fan, J. Zhao, Y.X. Li, S. Asim, C.Y. Wang, Sci. Rep. 5 (2015)15804-15812.
- [2] F. Zuo, K. Bozhilov, R.J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P.Y. Feng, Angew. Chem. Int. Edit. 51 (2012) 6223-6226.
- [3] X.Y. Xin, T. Xu, L. Wang, C.Y. Wang, Sci. Rep. 6 (2016) 23684-23692.
- [4] F. Zuo, L. Wang, T. Wu, Z.Y. Zhang, D. Borchardt, P.Y. Feng, J. Am. Chem. Soc. 132 (2010) 11856-11857.

Atoms	$\begin{array}{c} 12 \text{ F} & \begin{pmatrix} 0 \\ 1 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 1$			
	2FED _{HOMO} ²	2FED _{LUMO} ²	FED _{HOMO} ² +FED _{LUMO} ²	PCs
C1	0.2072	0.0584	0.1328	0.3827
C2	0.0764	0.2956	0.1860	0.3509
C3	0.0116	0.3202	0.1659	-0.0312
C4	0.0896	0.0014	0.0455	0.4778
C5	0.2510	0.0686	0.1598	-0.2324
C6	0.0178	0.4048	0.2113	0.1305
N7	0.1976	0.1290	0.1633	-1.0801
C8	0.0006	0.4666	0.2336	0.6766
С9	0.1346	0.0566	0.0956	-0.4368
C10	0.0048	0.1662	0.0865	0.6568
011	0.1730	0.1860	0.1795	-0.6139
F12	0.0574	0.0054	0.0314	-0.4057
N13	0.2060	0.0436	0.1248	-0.8332
C14	0.0020	0.0158	0.0089	0.3334
C15	0.0004	0.0038	0.0021	0.0445
C16	0.0010	0.0074	0.0042	0.9415
C17	0.0094	0.0452	0.0273	0.2340
C18	0.0032	0.0114	0.0083	0.2476
N19	0.0092	0.0044	0.0068	-0.3950
C20	0.0070	0.0054	0.0062	0.2499
C21	0.0048	0.0032	0.0040	0.2217
022	0.0012	0.0010	0.0011	-0.3210
O23	0.0168	0.0114	0.0141	-0.5985

Table S1 Point charges (PCs) and frontier electron densities (FEDs) on atoms of *Nor* calculated by Gaussian 03 program at B3LYP/6-31G* level.

Scheme S1 DMPO-OH production from 5,5-dimethly-1-pyrroline *N*-oxide (DMPO)

Fig.S1 EPR spectra of Cu^{2+} and the calibration curve used to determine Ti^{3+} concentration

Fig. S2 The plots of $-\ln(C/C_0)$ versus reaction time (min) for degradation curves under different catalytic system

In order to obtain the adsorption isotherms of Nor on different TiO_{2-x} , 50 mL of *Nor* aqueous solutions with various initial concentrations of 25 μ M, 50 μ M, 100 μ M, 200 μ M, 400 μ M, 600 μ M and 800 μ M were placed in contact with 0.05 g of TiO_{2-x}. After 24 h of magnetic stirring in the dark, the aqueous samples were filtered through 0.45 μ m membranes to remove TiO_{2-x} powder before analyzing the concentration of *Nor* by HPLC.

Fig.S3 Adsorption isotherm of *Nor* on different TiO_{2-x} . ([TiO_{2-x}] = 1.0 g/L, pH value = 7.0±0.2)

Mass spectra of Nor and P1 to P19:

Fig.S4 Product-ion spectra (MS/MS) of the $[M+H]^+$ ions of *Nor* and its degradation intermediates *P1-P19*. The intermediates were purified by semi-preparative HPLC and the tandem mass spectra were acquired on an LTQ linear ion-trap mass spectrometer.