Electronic Supplementary Material (ESI)

Enzymatic Ring-Opening Polymerization (ROP) of Lactides and Lactone in

Ionic Liquids and Organic Solvents: Digging the Controlling Factors

Hua Zhao,^{*,1,2} Gabrielle A. Nathaniel,² and Princess C. Merenini²

¹ Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO

80639, USA

² Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA

31404, USA

^{*} Corresponding author. Email: <u>hua.zhao@unco.edu</u>, or <u>huazhao98@gmail.com</u> (currently at University of Northern Colorado).

#	Lactide	Lipase ^a	Solvent ^b	Water	Т	t/d	Conversion	Yield	M _w	PDI	Ref.
		-		(%)	(°C)		(%)	(%)			
1	DL	N435, 3 wt%	_	unknown	80	7	0	0	_	_	1
2	L	N435, 6 wt%	—	unknown	100	10	91	_	2,440	2.6	2
3	L	Free CALB	—	unknown	130	1	_	54.1	45,200	1.13	3
4	L	Free CALB	toluene $(1/1, w/w)$	unknown	120	1	100	17.3	49,800	1.17	3
5	L	Free CALB	[BMIM][BF ₄] (1/1, w/w)	unknown	110	1	96.2	24.3	68,300	1.25	3
6	L	N435, 10 wt%	[BMIM][PF ₆] (7/10, w/w)	unknown	65	11	_	29.5	700	1.2	4
7	L	N435, 10 wt%	[BMIM][PF ₆] (7/10, w/w)	unknown	90	5	_	_	23,500	1.2	5
8	L	N435, 10 wt%	[HMIM][PF ₆] (7/10, w/w)	unknown	90	7	_	63.2	49,100	1.3	6
9	L	N435, 10 wt%	[HMIM][PF ₆] (7/10, w/w)	unknown	65	9	_	51.1	1,800	1.2	6
10	L	N435, 15 wt%	$scCO_2$	$a_{\rm w} < 0.16$	65	3	35.2	5.16	11,900	1.25	7
11	L	N435, 12.5 wt%	toluene $(1/2, g/mL)$	unknown	70	3	0	0	_	_	8
12	D	N435, 12.5 wt%	toluene $(1/2, g/mL)$	unknown	70	3	33	25	4,000	1.2	8
13	L	N435, 10 wt%	toluene	unknown	70	2	23	23	_	_	9
14	DL	N435, 10 wt%	toluene	unknown	70	2	5	_	_	_	9
15	D	N435, 10 wt%	toluene	unknown	70	2	98	90	4,600	1.3	9
16	D	PS, 3 wt%	_	unknown	100	7	96	5	59,000	1.2	1
17	DL	PS, 3 wt%	_	unknown	100	7	82	8	69,000	1.2	1
18	L	PS, 3 wt%	_	unknown	100	7	82	8	48,000	1.2	1
19	D	PS, 5 wt%	toluene	unknown	90	2	14	5	_	_	9
20	DL	PS, 5 wt%	toluene	unknown	90	2	20	10	550	1.1	9
21	L	PS, 5 wt%	toluene	unknown	90	2	80	65	770	1.1	9
22	L	PPL, 1wt%	_	unknown	100	7	_	_	17,600	1.9	10
23	D	PPL, 1wt%	_	unknown	100	7	_	_	27,000	1.4	10
24	DL	PPL, 1wt%	_	unknown	100	7	_	_	26,600	2.1	10

Table S1 Comparison of enzymatic ROP of lactides under different reaction conditions

Note: *a* N435 = Novozym 435; PS = lipase PS from *Burkholderia cepacia*; lipase concentration (wt%) based on monomer; *b* the number in parenthesis indicates the substrate/solvent ratio.

Name	Manufacturer and catalog number	Lot number	Water content (wt%)
L-(–)-lactide	Sigma 367044	STBF8444V	0.16
L-(–)-lactide	TCI L0115	KFISL-NP	0.08
D-(-)-lactide	Ark Pharm AK- 57455	WG0123247- 170118001	0.22
DL-lactide	Sigma 303143	BCBR2168V	0.12
DL-lactide	TCI L0091	OLMDE-DH	0.08
Novozym 435 (05/2009)	Sigma L4777	097K1155	0.77
Novozym 435 (09/2009)	Sigma L4777	067K3522	1.09
Novozym 435 (03/2016)-electrostatic	Sigma L4777	SLBP0766V	1.09
Novozym 435 (03/2017)	Sigma L4777	SLBS9524	1.94
Novozym 435 (05/2017)-electrostatic	Sigma L4777	SLBT3895	1.97
Novozym 435 (03/2016) dried over P_2O_5	Sigma L4777	SLBP0766V	1.26
Novozym 435 (05/2009), $a_w = 0.11$ (KCl)	Sigma L4777	097K1155	2.62
Novozym 435 (09/2009), $a_w = 0.11$ (KCl)	Sigma L4777	067K3522	2.52
Novozym 435 (03/2016), $a_w = 0.11$ (KCl)	Sigma L4777	SLBP0766V	2.26
Novozym 435 (03/2017), $a_w = 0.11$ (KCl)	Sigma L4777	SLBS9524	2.38
Novozym 435 (05/2009), $a_w = 0.33$ (MgCl ₂)	Sigma L4777	097K1155	3.62
Novozym 435 (03/2016), $a_w = 0.33$ (MgCl ₂)	Sigma L4777	SLBP0766V	3.49
Novozym 435 (03/2017), $a_w = 0.33$ (MgCl ₂)	Sigma L4777	SLBS9524	2.77
CALB on Immohead 150	Sigma 54326	BCBN4171V	1 27
CALB on Immobed 150 $a_{\rm rr} = 0.11$	Sigma 54326	BCBN4171V	2.39
Free CALB	Sigma 62288	BCBP3380V	4 14
CAI B-CLEA 27 U/mg	Sigma 16698	BCBO6594V	14 04
Amano lipase PS from <i>Burkholderia</i>	Sigma 534641	MKBV0029V	3.26
Amano linase PS	Amano	LPSAC0750102	1 78
lipase from porcine pancreas (PPL), type	Sigma L3126	074K0610	4.44
lipase from porcine pancreas (PPL), type	Sigma L3126	SLBL2143V	3.51
lipase PS-C Amano I	Amano	ILPSAC0350403R	1.16
lipase PS-D Amano I	Amano	ILPSAB0152305R	1.22
Amano lipase A from Aspergillus niger	Aldrich 53478-1	KI07922HI	5.05
lipase from <i>Pseudomonas cepacia</i> immobilized in sol-gel-AK	Sigma 62279	047096/1	0.74
lipase from <i>Candida Cylindracea</i> immobilized in sol-gel-AK	Fluka 62278	046989/1	2.94
Amano lipase from <i>Pseudomonas</i> fluorescens	Aldrich 534730	MKCB1125V	3.30

 Table S2 Water contents in monomers, enzymes, and solvents

[BMIM][PF ₆]	Merck KGaA	0.02
$[BMIM][PF_6], a_w = 0.11 (KCl)$	Merck KGaA	0.46
tetraglyme, $a_w = 0.11$ (KCl)	Sigma-Aldrich	2.33

Note: CALB = Candida antarctica lipase B; CLEA = Cross-Linked Enzyme Aggregate.

(a)

(b)

(c)

(d)

(e)

(f)

Figure S1 ¹H and ¹³C NMR spectra of polyesters: (**a**) ¹H NMR of PLLA (trial 1 in Table 1); (**b**) ¹³C NMR of PLLA (trial 1 in Table 1); (**c**) ¹H NMR of PDLA (trial 37 in Table 2); (**d**) ¹³C NMR of PDLA (trial 37 in Table 2); (**e**) ¹H NMR of PCL (trial 3 in Table 3); (**f**) ¹³C NMR of PCL (trial 3 in Table 3).

Figure S2 FT-IR spectra of polyesters.

REFERENCES

- 1. S. Matsumura, K. Mabuchi and K. Toshima, *Macromol. Rapid Commun.*, 1997, 18, 477-482.
- 2. M. Fujioka, N. Hosoda, S. Nishiyama, H. Noguchi, A. Shoji, D. S. Kumar, K. Katsuraya, S. Ishii and Y. Yoshida, *Sen'i Gakkaishi (doi 10.2115/fiber.62.63)*, 2006, **62**, 63-65.
- 3. M. Yoshizawa-Fujita, C. Saito, Y. Takeoka and M. Rikukawa, *Polym. Adv. Technol.*, 2008, **19**, 1396-1400.
- 4. M. Mena, S. Chanfreau, M. Gimeno and E. Bárzana, *Bioprocess Biosyst. Eng.*, 2010, 33, 1095-1101.
- 5. M. Mena, A. López-Luna, K. Shirai, A. Tecante, M. Gimeno and E. Bárzana, *Bioprocess Biosyst. Eng.*, 2013, **36**, 383-387.
- 6. S. Chanfreau, M. Mena, J. R. Porras-Domínguez, M. Ramírez-Gilly, M. Gimeno, P. Roquero, A. Tecante and E. Bárzana, *Bioprocess Biosyst. Eng.*, 2010, **33**, 629-638.

- 7. R. García-Arrazola, D. A. López-Guerrero, M. Gimeno and E. Bárzana, J. Supercrit. Fluids, 2009, **51**, 197-201.
- 8. M. Hans, H. Keul and M. Moeller, *Macromol. Biosci.*, 2009, 9, 239-247.
- 9. S. W. Duchiron, E. Pollet, S. Givry and L. Avérous, RSC Adv., 2015, 5, 84627-84635.
- 10. S. Matsumura, K. Tsukada and K. Toshima, Int. J. Biol. Macromol., 1999, 25, 161-167.