Electronic Supporting Information

Separation of rare earth ions from ethylene glycol (+LiCl) solutions by non-aqueous solvent extraction with Cyanex 923

Nagaphani Kumar Batchu,^a Tom Vander Hoogerstraete,^a Dipanjan Banerjee,^b

and Koen Binnemans*,a

Table S1. Viscosity of the rare-earth feed solution as a function of LiCl concentration (20 °C).

Feed composition	Viscosity (mPa·s)
Ethylene glycol	17.5
Ethylene glycol + 2 M LiCl	53.0
Ethylene glycol + 4 M LiCl	211
La(III)-50g/L+ 0 M LiCl	30
Feed + 1 M LiCl	52
Feed + 2 M LiCl	96
Feed + 3 M LiCl	180
Feed + 4 M LiCl	308

Feed: a mixture of 9 REEs, each of \sim 5 g/L in ethylene glycol

Temperature, °C	Viscosity (mPa·s)
20	124
30	72
40	45
50	30
60	21

Table S2. Viscosity of the rare-earth feed solution as a function of temperature

Feed: a Mixture of 9 REEs, each of ~5 g/L in ethylene glycol(+ 2 M LiCl)

Figure S1. Recycling and reuse of 1 M Cyanex[®] 923 for the extraction and stripping of Yb(III) for five cycles.