Electronic Supplementary Information (ESI)

CO₂-switchable Polymer-hybrid Silver Nanoparticles and Their Gas-tunable Catalytic Activity

Zanru Guo,^a* Hongjian Gu,^a Wei Ma,^a Qiang Chen,^a Zhanfeng He,^b* Jiali Zhang,^a Yongxin Liu,^a Longzhen Zheng^a and Yujun Feng^c*

^aDepartment of Polymer Materials and Chemical Engineering, School of Materials Science and Engineering, East China Jiao tong University, Nanchang, Jiangxi 330013,
P. R. China. E-mail addresses: guozanru@ecjtu.edu.cn (Z. Guo)
^bState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Southwest
Petroleum University, Chengdu 610500, P. R. China. E-mail addresses:
he_zhanfeng2008@126.com (Z He)
^cPolymer Research Institute, State Key Laboratory of Polymer Materials Engineering,
Sichuan University, Chengdu 610065, P. R. China. E-mail addresses:

Characterizations

Fig. S1 was the ¹H NMR spectrum of trithioester terminated PDEAMA in CDCl₃: The signals at 0.9 ppm, 1.00 ppm, 1.2 ppm, 2.15 ppm are attributed to the protons in terminal $-CH_2$ and $-CH_3$, $-NCH_2CH_3$, side group $-CH_3$, $-CH_2-$ of main chain, respectively. 2.5 ppm and 2.6 ppm are the chemical shift of the protons in CH₃CH₂N– and $-OCH_2CH_2N-$, respectively. 4.0 ppm is the signal of the protons in – OCH_2CH_2N- . The characteristic signals of the polymer were assigned, indicating that the PDEAMA-CTA was obtained successfully.

Fig. S1 ¹H NMR spectrum of PDEAEMA in CDCl₃.

Fig. S2 is the GPC chromatogram for PDEAEMA. The average number molecule weight (M_n) and polydispersity index (PDI, M_w/M_n) is 9,250 g mol⁻¹ and 1.25, respectively.

Fig.S3 shows XRD pattern of Ag–NPs shows characteristic diffraction peaks for metallic silver [111], [200], [220] and [311] facets, indicative of the formation of pure Ag.

Fig. S3 XRD pattern of Ag-P1

Fig. S4 is the FT-IR spectra of the nanoparticles and the PDEAEMA.

Fig. S4 IR spectrum of Ag-P1 and PDEAEMA (KBr pellet method).

Fig. S5 is the UV-vis spectra of Ag-P1measured with the same concentration at different times. There is no obvious difference in the shape, position, and symmetry of the absorption peak during 12 months, indicative of the long-term stability of hybrids.

Fig. S5 The stability analysis for Ag-P1 (0.1mg·mL⁻¹) in water after bubbling CO₂ at 25°C by UV-

vis spectra.

Fig. S6 is TEM of Ag-P1 in water after bubbling N_2 at 25°C.An obvious aggregation state of the AgNPs hybrids can be observed.

Fig. S6 TEM images of Ag-P1 in water after bubbling N2 at 25°C.

Fig. S7 shows the time-dependent UV spectra for the reduction of 4-nitrophenol in presence of Ag-P1 hybrids at different CO_2 flow rate.

Fig. S7 Time-dependent UV-vis spectral changes of 4-nitrophenol catalyzed by Ag-P1 with different flow rate of CO₂ bubbling: (a) 0 mL·min⁻¹, (b) 10 mL·min⁻¹, (c) 15 mL·min⁻¹, (d) 20 mL·min⁻¹, (e) 25 mL·min⁻¹, (f) 30 mL·min⁻¹, (g) 40 mL·min⁻¹ and (h) 50 mL·min⁻¹, respectively. The insert images of the plots of $In(C/C_0)$ versus the time t. The concentrations of 4-NP is 0.0139 mg·mL⁻¹, the concentrations of NaBH₄ is 0.38 mg·mL⁻¹and the concentrations of Ag-P1 is 2x10⁻³ mg·mL⁻¹.

Fig. S8 shows the time-dependent UV spectra for the reduction of 4-nitrophenol without Ag-P1 hybrids by bubbling CO₂.

Fig. S8 The time-dependent UV spectra for the reduction of 4-nitrophenolin without Ag-P hybrids by bubbling CO₂. The flow rate of CO₂ is 30 mL·min⁻¹, and the concentrations of 4-NP is 0.0139 mg·mL⁻¹.

Fig. S9 shows pH value of the reaction solution at different flow rate of CO_2 .

Fig. S9 The pH changes of the reaction solution at different flow rate of CO₂.

Calculation of the polymer content onto one nanoparticle

We assume that PDEAEMA-AgNPs hybrids is 1.0 g. Based on the TGA data, the weight of polymer ($W_{polymer}$) and Ag (W_{Ag}) can be known. Thus the average number of the polymer chains and silver nanoparticles in the hybrids can be calculated by dividing their average molecular weight. Then the average number (*A*) of polymer chains wrapped per silver nanoparticle can be calculated from Equation (1).

$$A = \frac{\frac{W_{polymer}}{M_{n(polymer)}} \times N_A}{\frac{w_{Ag}}{M_{Ag}}}$$
(1)

Where N_A is Avogadro's number, $M_{n(polymer)}$ is the the molar mass of polymer and it can be obtained in CPC analysis, M_{Ag} is the weight of one silver nanoparticles

The density of the silver (ρ) is 10.53g·cm⁻³. Thus the weight of one silver nanoparticles can be calculated using Equation (2).

$$M_{Ag} = \rho \times \mathbf{V} \tag{2}$$

Where V is the volume of one silver nanoparticle. The volume of one silver nanoparticle can be calculated using equation (3).

$$V = \frac{4}{3}\pi (\frac{1}{2}D)^3$$
 (3)

Where D is the diameter of the silver nanoparticle, which be obtained from TEM observation.

The weight ratio of polymer to silver for Ag-P1, Ag-P2 and Ag-P3 are 90:10, 84:16, 71:29 (w/w %), respectively; and the diameter of Ag-P1, Ag-P2 and Ag-P3 are 8.51 nm, 10.06 nm and 14.16 nm, respectively. So, we calculated that an average number of 2000, 1900 and 2470 polymer chains were coated onto one Ag-P1, Ag-P2 and Ag-P3, respectively.