Supporting Information

Light Induced Construction of Porous Covalent Organic Polymeric Networks for Significant Enhancement of CO₂ Gas Sorption

Soumitra Bhowmik,^a Maruthi Konda^a and Apurba K. Das*,^a

Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.

*E-mail: apurba.das@iiti.ac.in

Table of Content

S. No.		Page No
1	Scheme S1 Synthetic scheme of compound 9	S3
2	Scheme S2 Synthetic scheme of compound 1	S3
3	Scheme S3 Synthetic scheme of compound 2	S4
4	Fig. S1 SEM images of compound 1 (a) before UV irradiation, (b) at	S5
	60 min of UV irradiation	
5	Fig. S2 SEM images of compound 1 (a) before UV irradiation and (d)	S5
	at 60 min of UV irradiation	
6	Fig. S3 SEM images of compound 2 (a) before UV reaction and (e)	S5
	after 60 min of UV irradiation	
7	Fig. S4 TGA curves for compound 1, polymer 1, compound 2 and	S6
	polymer 2	~-
8	Fig. S5 ¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 6	<u> </u>
19	Fig. S6 ¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 7	S7
10	Fig. S7 ¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 8	<u>S8</u>
11	Fig. S8 ¹ H NMR spectrum (400 MHz, DMSO-d ₆) of compound 9	<u>S8</u>
12	Fig. S9 ¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 10	<u>S9</u>
13	Fig. S10 ¹³ C NMR spectrum (100 MHz, CDCl ₃) of compound 10	<u>S9</u>
14	Fig. S11 ¹ H NMR spectrum (400 MHz, DMSO- d_6) of compound 11	S10
15	Fig. S12 ¹ H NMR spectrum (400 MHz, CDCl ₃) of compound 12	S10
16	Fig. S13 ¹³ C NMR spectrum (100 MHz, CDCl ₃) of compound 12	S11
17	Fig. S14 ¹ H NMR spectrum (400 MHz, DMSO- <i>d</i> ₆) of compound 1	S11
18	Fig. S15 ¹³ C NMR spectrum (100 MHz, DMSO- d_6) of compound 1	S12
19	Fig. S16 ¹ H NMR spectrum (400 MHz, DMSO- d_6) of compound 13	S12
20	Fig. S17 ¹³ C NMR spectrum (100 MHz, DMSO- d_6) of compound 13	S13
21	Fig. S18 ¹ H NMR spectrum (400 MHz, DMSO- d_6) of compound 2	S13
22	Fig. S19 ¹³ C NMR spectrum (100 MHz, DMSO- d_6) of compound 2	S14
23	Fig. S20 ESI-MS spectrum of compound 8	S14
24	Fig. S21 ESI-MS spectrum of compound 10	S14
25	Fig. S22 ESI-MS spectrum of compound 11	S15
26	Fig. S23 ESI-MS spectrum of compound 12	S15
27	Fig. S24 ESI-MS spectrum of compound 1	S15
28	Fig. S25 ESI-MS spectrum of compound 13	S16
29	Fig. S26 ESI-MS spectrum of compound 2	S16

1. Synthesis of diphenylbutadiyne containing peptide bolaamphiphiles:

Reagents and conditions: (a) TMSA, Pd(PPh₃)₂Cl₂, CuI, Et₃N, 80 °C; (b) K₂CO₃/MeOH, rt; (c) CuCl/TMEDA, acetone, rt; (d) NaOH/THF, reflux.

Scheme S1 Synthetic scheme of 4,4'-(buta-1,3-diyne-1,4-diyl)dibenzoic acid 9.

Reagents and conditions: (a) DCC, HOBt, DMF; (b) 2N NaOH, MeOH.

Scheme S2 Synthetic scheme of compound 1.

Reagents and conditions: (a) DCC, HOBt, DMF; (b) 2N NaOH, MeOH.

Scheme S3 Synthetic scheme of compound 2.

2. Morphological Study:

Fig. S1 SEM images of compound **1** (a) before UV irradiation, (b) at 60 min of UV irradiation. ($C = 15 \text{ mmol } \text{L}^{-1}$)

Fig. S2 SEM images of compound **1** (a) before UV irradiation and (d) at 60 min of UV irradiation. ($C = 30 \text{ mmol } L^{-1}$).

Fig. S3 SEM images of compound **2** (a) before UV reaction and (e) after 60 min of UV irradiation. ($C = 20 \text{ mmol } L^{-1}$)

Fig. S4 TGA curves for compound 1, polymer 1, compound 2 and polymer 2.

3. NMR Spectra of all synthesized compounds:

Fig. S5 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 6.

Fig. S6 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 7.

Fig. S7 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 8.

Fig. S8 ¹H NMR spectrum (400 MHz, DMSO-*d*₆) of compound 9.

Fig. S9 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 10.

Fig. S10 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 10.

Fig. S11 ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 11.

Fig. S12 ¹H NMR spectrum (400 MHz, CDCl₃) of compound 12.

Fig. S13 ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 12.

Fig. S14 ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 1.

Fig. S15 13 C NMR spectrum (100 MHz, DMSO- d_6) of compound 1.

Fig. S16 ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 13.

Fig. S17 13 C NMR spectrum (100 MHz, DMSO- d_6) of compound 13.

Fig. S18 ¹H NMR spectrum (400 MHz, DMSO- d_6) of compound 2.

Fig. S19 ¹³C NMR spectrum (100 MHz, DMSO- d_6) of compound 2.

4. Mass Spectra of all synthesized compounds:

Fig. S21 ESI-MS spectrum of compound 10.

Fig. S22 ESI-MS spectrum of compound 11.

Fig. S24 ESI-MS spectrum of compound 1.

Fig. S25 ESI-MS spectrum of compound 13.

Fig. S26 ESI-MS spectrum of compound 2.