Electronic Supplementary Information

A novel self-assembled supramolecular sensor based on thiophene functionalized imidazophenazine for dual-channel detection Ag⁺ in aqueous solution

Hai-Xiong Shi, Wen-Ting Li, Qiao Li, Hai-Li Zhang, Tai-Bao Wei*, You-Ming

Zhang, Qi Lin and Hong Yao

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070. P. R. China

Table of Contents

Instruments and materials.

Synthesis of sensors IM.

General procedure for UV-vis and fluorescence spectra experiments.

General procedure for ¹H NMR experiments.

Fig. S1 UV-vis absorption and spectra of **S1** (20 μ M) with metal ions (Fe³⁺, Hg²⁺, Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Pb²⁺, Zn²⁺, Cr³⁺, and Mg²⁺) in the DMSO/H₂O (v:v = 1:1,buffered with HEPES pH = 7.2) solution in response to Ag⁺ (10 equiv.).

Fig. S2 Fluorescence spectra responses in DMSO/H₂O (v : v = 1 : 1, buffered with HEPES pH = 7.2) of S1 (2.0×10^{-5} M) upon addition of Pd²⁺ (10 equiv.).

Fig. S3 UV–vis absorption and spectra of **S1** (20 μ M) with Pd²⁺ ions in the DMSO/H₂O (v:v = 1:1,buffered with HEPES pH = 7.2) solution in response to Ag⁺ (10 equiv.).

Fig. S4 UV-vis absorbance intensity of S1 (20 μ M) in response to Ag⁺ (10 equiv.) in the presence of various metal ions species in DMSO/H₂O (v:v = 1:1,buffered with HEPES pH = 7.2) solution. From 1 to 13: S1, S1 + Ag⁺, S1 + Ag⁺ + Fe³⁺, S1 + Ag⁺ + Ca²⁺, S1 + Ag⁺ + Cu²⁺, S1 + Ag⁺ + Co²⁺, S1 + Ag⁺ + Ni²⁺, S1 + Ag⁺ + Cd²⁺, S1 + Ag⁺ + Cd²⁺, S1 + Ag⁺ + Hg²⁺, S1 + Ag⁺ + Cr³⁺, S1 + Ag⁺ + Mg²⁺.

Fig. S5 Plot of the intensity at 365 nm for a mixture of the sensor S1 (20 μ M) and Ag⁺ in DMSO/H₂O (v:v = 1:1, buffered with HEPES pH = 7.2) in the range 0.00 to 42.24 μ M. (λ_{ex} = 400 nm).

Fig. S6 Plot of the absorbance for a mixture of the sensor S1 (20 μ M) and Ag⁺ in DMSO/H₂O (v:v = 1:1, buffered with HEPES pH = 7.2) in the range 0.00 to 40.32 μ M.

Fig. S7 The pH response of **S1** and **S1**-Ag⁺ in the DMSO/H₂O (v:v = 1:1, buffered with HEPES pH = 7.2) solution.

Fig. S8 XRD diagrams of S1 and S1-Ag⁺.

Fig. S9 Fluorescence intensity reversible switching cycles of the S1 water solution $(2.0 \times 10^{-5} \text{ M})$ on alternate addition of Ag⁺ and I⁻.

Fig. S10 FT-IR spectra of compound S1 and S1-Ag⁺.

Fig. S11 ¹H NMR spectra (600 MHz, DMSO- d_6) of free S1 and in the presence of Ag⁺.

Fig. S12 Optimized structures of IM.

Fig. S13 Optimized structures of IM-Ag⁺ complexes.

Table S1 Fluorescent sensors reported for the detection of Ag⁺.

Table S2 DFT computed selected bond lengths for IM.

Table S3 DFT computed selected bond angles for IM.

Table S4 DFT computed selected bond lengths for IM-Ag⁺.

Table S5 DFT computed selected bond angles for IM-Ag⁺.

Fig. S14 ESI-MS spectrum of IM.

Fig. S15 ESI-MS spectrum of IM-Ag⁺.

Fig. S16 The Job's plot examined between Ag⁺ and **IM**, indicating the 2 : 1 stoichiometry, which was carried out by fluorescence spectra ($\lambda ex = 400 \text{ nm}$).

Fig. S17 ¹H NMR spectra of compound S1.

Fig. S18 ¹³C NMR spectra of compound IM.

References

Instruments and materials

¹H NMR and ¹³C NMR spectra were carried out on a Mercury-400BB spectrometer at 600 MHz. Electrospray ionization mass spectra (ESI-MS) were measured on an Agilent 1100 LC-MSD-Trap-VL system. UV-visible spectra were recorded on a Shimadzu UV-2550 spectrometer. Photoluminescence spectra were performed on a Shimadzu RF-5301 fluorescence spectrophotometer. Melting points were measured on an X-4 digital melting-point apparatus (uncorrected). The infrared spectra were performed on a Digilab FTS-3000 FT-IR spectrophotometer. All cations, in terms of Fe³⁺, Hg²⁺, Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Pb²⁺, Zn²⁺, Cr³⁺, and Mg²⁺ were added in the form of perchlorate salts, which were purchased from Alfa-Aesar Chemical, and stored in a vacuum desiccator containing self-indicating silica and dried fully before using. All reagents were gained commercially for synthesis and without further purification during experiment progress. Double distilled water was used throughout the experiment.

Synthesis of sensors IM

2,3-Diamino-phenazine (0.42g, 2 mmol), 2-thiophene carboxaldehyde (0.22 g, 2 mmol) and catalytic amount of acetic acid (AcOH) were combined in hot absolute DMF (20 mL). The solution was stirred under reflux conditions for 8 h, after cooling to room temperature, the brown precipitate was filtrated, washed with hot absolute ethanol for three times, then recrystallized with DMF-H₂O to get yellow powdery product **S1** (0.52g) at yield of 82% (m.p. >300°C), ¹H NMR (DMSO- d_6 , 600 MHz) δ :13.50 (s 1H), 8.44 (s 1H), 8.23 (s 2H), 8.15 (m 2H), 8.00-7.99 (d 1H), 7.90-7.88 (m

2H), 7.39-7.36 (m 1H), 6.25 (s 1H). ¹³C NMR (151 MHz, DMSO-*d*₆), δ 155.63, 149.42, 142.34, 140.95, 132.92, 130.85 and 129.50. IR (KBr, cm⁻¹) v: 3428.85, 3200.52, 1655.37, 1589.50, 1565.35, 1505.34, 1427.05; ESI-MS m/z: [M - H⁺] Calcd for C₁₇H₁₀N₄S 301.06; Found 301.09.

General procedure for UV-vis and fluorescence spectra experiments

The solution of sensor **S1** (2.0×10^{-4} M) in DMSO was prepared and stored in dry atmosphere. The solution was used for all spectroscopic studies after appropriate dilution. The DMSO solutions of each cations (4×10^{-3} M) were prepared, via perchloratesalts of Fe³⁺, Hg²⁺, Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Pb²⁺, Zn²⁺, Cr³⁺, and Mg²⁺. All the UV-vis experiments were carried out in DMSO/H₂O (v:v = 1:1, buffered with HEPES pH = 7.2) solution on a Shimadzu UV-2550 spectrometer. Any change in the UV-vis spectra of the synthesized compounds was recorded on addition of salts while keeping the ligand concentration constant (2.0×10^{-5} M) in all experiments. All the fluorescence spectra experiments were carried out in DMSO/H₂O (v:v = 1:1, buffered with HEPES pH = 7.2) solution on a Shimadzu RF-5301 spectrometer. The fluorescence spectra were obtained by excitation at 400 nm. Any change in the fluorescence spectra of the synthesized compounds was recorded upon the addition of salts while keeping the ligand concentration constant (2.0×10^{-5} M) in all experiments.

General procedure for ¹H NMR experiments

For ¹H NMR titrations, two stock solutions were prepared in DMSO- d_6 , one containing the sensor only and the second containing an appropriate concentration of

the metal. Aliquots of the two solutions were mixed directly in NMR tube.

Fig. S1 UV–vis absorption and spectra of **S1** (20 μ M) with metal ions (Fe³⁺, Hg²⁺, Ag⁺, Ca²⁺, Cu²⁺, Co²⁺, Ni²⁺, Cd²⁺, Pb²⁺, Zn²⁺, Cr³⁺, and Mg²⁺) in the DMSO/H₂O (v:v = 1:1,buffered with HEPES pH = 7.2) solution in response to Ag⁺(10 equiv.).

Fig. S2 Fluorescence spectra responses in DMSO/H₂O (v : v = 1 : 1, buffered with HEPES pH = 7.2) of **S1** (2.0×10^{-5} M) upon addition of Pd²⁺ (10 equiv.).

Fig. S3 UV–vis absorption and spectra of **S1** (20 μ M) with Pd²⁺ ions in the DMSO/H₂O (v:v = 1:1,buffered with HEPES pH = 7.2) solution in response to Ag⁺ (10 equiv.).

Fig. S4 UV–vis absorbance intensity of S1 (20 μ M) in response to Ag⁺ (10 equiv.) in the presence of various metal ions species in DMSO/H₂O (v:v = 1:1,buffered with HEPES pH = 7.2) solution. From 1 to 13: S1, S1 + Ag⁺, S1 + Ag⁺ + Fe³⁺, S1 + Ag⁺ + Ca²⁺, S1 + Ag⁺ + Cu²⁺, S1 + Ag⁺ + Co²⁺, S1 + Ag⁺ + Ni²⁺, S1 + Ag⁺ + Cd²⁺, S1 + Cd²⁺, S1

Fig. S5 Plot of the intensity at 365nm for a mixture of the sensor **S1** (20 μ M) and Ag⁺ in DMSO/H₂O (v:v = 1:1, buffered with HEPES pH = 7.2) in the range 0.00 to 42.24 μ M. (λ_{ex} = 400 nm). The result of the analysis as follows: Linear Equation: Y = -37.2262× X +509.177 R² = 0.99885

 $S = 37.2262 \times 10^{6}$ $\delta = \sqrt{\frac{\Sigma(A_0 - A_1)^2}{N-1}} = 0.1016(N=20)$ K = 3

 $LOD = K \times \delta / S = 8.18 \times 10^{-9} M$

 A_0 is the absorbance intensity of S1; A_1 is the average of the A_0 .

Fig. S6 Plot of the absorbance for a mixture of the sensor S1 (20 μ M) and Ag⁺ in DMSO/H₂O (v:v = 1:1, buffered with HEPES pH = 7.2) in the range 0.00 to 40.32 μ M. The result of the analysis as follows:

Linear Equation: $Y = -0.1395 \times X + 1.1431$ $R^2 = 0.99603$ $S = 0.1395 \times 10^6$ $\delta = \sqrt{\frac{2(A_0 - A_0)^2}{N-1}} = 0.040694 (N=20)$ K = 3

LOD = K $\times \delta$ / S = 8.75 \times 10⁻⁷ M

 A_0 is the absorbance intensity of S1; A_1 is the average of the A_0 .

Fig. S7 The pH response of S1 and S1-Ag⁺ in the DMSO/H₂O (v:v = 1:1, buffered with HEPES pH = 7.2) solution.

Fig. S8 XRD diagrams of S1 and S1-Ag⁺.

Fig. S9 Fluorescence intensity reversible switching cycles of the S1 water solution $(2.0 \times 10^{-5} \text{ M})$ on alternate addition of Ag⁺ and I⁻.

Fig. S10 FT-IR spectra of compound S1 and S1-Ag⁺.

Fig. S11 ¹H NMR spectra (600 MHz, DMSO- d_6) of free S1 and in the presence of Ag⁺.

Fig. S12 Optimized structures of IM.

Fig. S13 Optimized structures of IM-Ag⁺ complexes.

References	Reproducibility	LOD (M)	Solvent	Selectivity
[1]	No	4.0×10^{-9}	Ethanol	Ag^+
[2]	No	$5.0 imes 10^{-8}$	DMSO/H ₂ O (v/v, 9:1)	Ag^+
[3]	No	6.20×10^{-6}	CH3CN/H ₂ O (v/v, 1:1)	Ag^+
[4]	No	$6.0 imes 10^{-7}$	H ₂ O	Ag^+
[5]	More than 3 times	$7.73 imes 10^{-8}$	DMSO/H ₂ O (v/v, 1:1)	Ag^+
This work	3 times	$8.18 imes 10^{-9}$	DMSO/H ₂ O (v/v, 1:1)	Ag^+

Table S1 Fluorescent sensors reported for the detection of Ag⁺.

Chemical	Bond	Chemical	Bond	Chemical	Bond	Chemical	Bond
bond	length/(10 ⁻						
	¹⁰ m)		¹⁰ m)		¹⁰ m)		¹⁰ m)
R(1,2)	1.418	R(1,6)	1.3779	R(1,46)	1.0851	R(2,3)	1.3843
R(2,47)	1.0856	R(3,4)	1.4138	R(3,48)	1.0848	R(4,5)	1.4441
R(4,7)	1.3562	R(5,6)	1.4253	R(5,10)	1.3431	R(6,49)	1.0849
R(7,8)	1.3286	R(8,9)	1.4607	R(8,11)	1.4407	R(9,10)	1.3428
R(9,14)	1.4177	R(11,12)	1.3706	R(11,50)	1.0854	R(12,13)	1.4499
R(12,15)	1.3826	R(13,14)	1.3976	R(13,17)	1.3471	R(14,51)	1.0845
R(15,16)	1.3617	R(15,45)	2.1266	R(16,17)	1.3639	R(16,18)	1.4403
R(18,19)	1.3854	R(18,22)	1.7527	R(19,20)	1.4143	R(19,52)	1.0842
R(20,21)	1.3775	R(20,53)	1.0833	R(21,22)	1.7194	R(21,54)	1.0819
R(23,24)	1.4183	R(23,28)	1.384	R(23,55)	1.0856	R(24,25)	1.3777
R(24,56)	1.0851	R(25,26)	1.4255	R(25,57)	1.0849	R(26,27)	1.4443
R(26,29)	1.3429	R(27,28)	1.4141	R(27,32)	1.3558	R(28,58)	1.0848
R(29,30)	1.3431	R(30,31)	1.4606	R(30,33)	1.4175	R(31,32)	1.3288
R(31,36)	1.4404	R(33,34)	1.3978	R(33,59)	1.0845	R(34,35)	1.45
R(34,37)	1.348	R(35,36)	1.3703	R(35,39)	1.3827	R(36,60)	1.0855
R(37,38)	1.3635	R(38,39)	1.3616	R(38,40)	1.4405	R(39,45)	2.1278
R(40,41)	1.3845	R(40,44)	1.7497	R(41,42)	1.4162	R(41,61)	1.0826
R(42,43)	1.3728	R(42,62)	1.0833	R(43,44)	1.7311	R(43,63)	1.0815

Table S2 DFT computed selected bond lengths for IM.

Bond angle	Angle/°	Bond angle	Angle/°	Bond angle	Angle/°
A(2.1.6)	120.4738	A(2,1,46)	119.4293	A(6.1.46)	120.0969
A(1,2,3)	121.0959	A(1,2.47)	119.2574	A(3,2.47)	119.6468
A(2,3,4)	119.9675	A(2,3.48)	121.8157	A(4,3,48)	118.2168
A(3,4,5)	119.1093	A(3,4,7)	119.5132	A(5,4,7)	121.3775
A(4,5,6)	119.4099	A(4,5,10)	121.3586	A(6,5,10)	119.2316
A(1.6.5)	119.9436	A(1,6,49)	122.1907	A(5,6,49)	117.8657
A(4,7,8)	117.3548	A(7,8,9)	121.2693	A(7,8,11)	118.4534
A(9,8,11)	120.2773	A(8,9,10)	121.3611	A(8,9,14)	120.1786
A(10,9,14)	118.4603	A(5,10,9)	117.2787	A(8,11,12)	118.167
A(8,11,50)	118.0939	A(12,11,50)	123.7391	A(11,12,13)	121.6983
A(11,12,15)	131.6499	A(13,12,15)	106.6509	A(12,13,14)	121.4714
A(12,13,17)	109.497	A(14,13,17)	129.0317	A(9,14,13)	118.2069
A(9,14,51)	119.7279	A(13,14,51)	122.0652	A(12,15,16)	104.6061
A(12,15,45)	123.3185	A(16,15,45)	131.9418	A(15,16,17)	114.8109
A(15,16,18)	125.8876	A(17,16,18)	119.2997	A(13,17,16)	104.4332
A(16,18,19)	130.7173	A(16,18,22)	118.5193	A(19,18,22)	110.7562
A(18,19,20)	113.106	A(18,19,52)	123.5561	A(20,19,52)	123.3256
A(19,20,21)	112.3134	A(19,20,53)	124.1256	A(21,20,53)	123.5597
A(20,21,22)	112.6167	A(20,21,54)	127.5504	A(22,21,54)	119.8325
A(18,22,21)	91.2064	A(24,23,28)	121.087	A(24,23,55)	119.2573
A(28,23,55)	119.6557	A(23,24,25)	120.4884	A(23,24,56)	119.4189
A(25,24,56)	120.0927	A(24,25,26)	119.9515	A(24,25,57)	122.1853
A(26,25,57)	117.8631	A(25,26,27)	119.3859	A(25,26,29)	119.2394
A(27,26,29)	121.3747	A(26,27,28)	119.118	A(26,27,32)	121.3678
A(28,27,32)	119.5142	A(23,28,27)	119.9692	A(23,28,58)	121.8264
A(27,28,58)	118.2045	A(26,29,30)	117.2841	A(29,30,31)	121.3258
A(29,30,33)	118.475	A(31,30,33)	120.1992	A(30,31,32)	121.2971
A(30,31,36)	120.244	A(32,31,36)	118.4588	A(27,32,31)	117.3504
A(30,33,34)	118.2557	A(30,33,59)	119.677	A(34,33,59)	122.0672
A(33,34,35)	121.3536	A(33,34,37)	128.9537	A(35,34,37)	109.6926
A(34,35,36)	121.7814	A(34,35,39)	106.5054	A(36,35,39)	131.7126
A(31,36,35)	118.1654	A(31,36,60)	118.0518	A(35,36,60)	123.7822
A(34,37,38)	104.2122	A(37,38,39)	114.9622	A(37,38,40)	119.5105
A(39,38,40)	125.527	A(35,39,38)	104.6272	A(35,39,45)	123.9543
A(38,39,45)	131.4119	A(38,40,41)	125.4435	A(38,40,44)	123.8537
A(41,40,44)	110.7025	A(40,41,42)	113.1482	A(40,41,61)	121.7707
A(42,41,61)	125.0811	A(41,42,43)	112.7268	A(41,42,62)	124.038
A(43,42,62)	123.2352	A(42,43,44)	112.0393	A(42,43,63)	128.3543
A(44,43,63)	119.6058	A(40,44,43)	91.3831		

Table S3 DFT computed selected bond angles for IM.

Chemical	Bond	Chemical	Bond	Chemical	Bond	Chemical	Bond
bond	length/(10-	bond	length/(10-	bond	length/(10 ⁻	bond	length/(10-
	¹⁰ m)		¹⁰ m)		¹⁰ m)		¹⁰ m)
R(1,2)	1.4298	R(1,6)	1.3688	R(1,49)	1.0859	R(2,3)	1.3684
R(2,50)	1.0859	R(3,4)	1.4303	R(3,51)	1.085	R(4,5)	1.448
R(4,7)	1.3383	R(5,6)	1.4295	R(5,10)	1.3396	R(6,52)	1.085
R(7,8)	1.346	R(8,9)	1.4591	R(8,11)	1.4221	R(9,10)	1.3446
R(9,14)	1.424	R(11,12)	1.3758	R(11,47)	1.0836	R(12,13)	1.441
R(12,15)	1.3906	R(13,14)	1.3701	R(13,17)	1.3855	R(14,53)	1.0841
R(15,16)	1.321	R(15,46)	1.9384	R(16,17)	1.3821	R(16,18)	1.4476
R(17,23)	1.0082	R(18,19)	1.3784	R(18,22)	1.7527	R(19,20)	1.4198
R(19,48)	1.0825	R(20,21)	1.3697	R(20,54)	1.0832	R(21,22)	1.7302
R(21,55)	1.0809	R(24,25)	1.4289	R(24,29)	1.3694	R(24,56)	1.0862
R(25,26)	1.3691	R(25,57)	1.0861	R(26,27)	1.4301	R(26,58)	1.0852
R(27,28)	1.4461	R(27,30)	1.3395	R(28,29)	1.4295	R(28,33)	1.3406
R(29,59)	1.0853	R(30,31)	1.3463	R(31,32)	1.4626	R(31,34)	1.4212
R(32,33)	1.3448	R(32,37)	1.4232	R(34,35)	1.3773	R(34,60)	1.0836
R(35,36)	1.4462	R(35,38)	1.3839	R(36,37)	1.3721	R(36,40)	1.3824
R(37,61)	1.0838	R(38,39)	1.3188	R(39,40)	1.3859	R(39,41)	1.4503
R(40,46)	1.0288	R(41,42)	1.3778	R(41,45)	1.7514	R(42,43)	1.4199
R(42,62)	1.0826	R(43,44)	1.3702	R(43,63)	1.0837	R(44,45)	1.7318
R(44,64)	1.081	R(45,48)	4.0556				

Table S4 DFT computed selected bond lengths for IM-Ag⁺.

Bond angle	Angle/°	Bond angle	Angle/°	Bond angle	Angle/°
A(2.1.6)	120.87	A(2 1 49)	119 107	A(6.1.49)	120 0231
A(1,2,3)	120.8081	A(1,2,50)	119 1266	A(3, 2, 50)	120.0653
A(2,3,4)	120.1969	A(2,3,51)	122 2527	A(4 3 51)	117 5504
A(3 4 5)	118 9809	A(347)	119 4579	A(547)	121 5612
A(456)	118 9472	A(4510)	121 528	A(6510)	119 5248
A(1.6.5)	120 1969	A(1.6.52)	122.198	A(5.6.52)	117 6051
A(478)	117 4115	A(7 8 9)	120 9677	A(7 8 11)	118 5821
A(9.8.11)	120 4501	A(8,9,10)	121 2359	A(8914)	120 2297
A(10.9.14)	118.5343	A(5,10.9)	117.2956	A(8,11,12)	118.2261
A(8.11.47)	119.0823	A(12.11.47)	122.6915	A(11.12.13)	120.6005
A(11.12.15)	129.824	A(13.12.15)	109.5753	A(12,13,14)	123.442
A(12.13.17)	104.1446	A(14.13.17)	132.4135	A(9.14.13)	117.0514
A(9.14.53)	118.9015	A(13.14.53)	124.0471	A(12.15.16)	105.9652
A(12.15.46)	121.9964	A(16.15.46)	131.7492	A(15.16.17)	112.3494
A(15,16,18)	125.0787	A(17,16,18)	122.5718	A(13,17,16)	107.9649
A(13.17.23)	125.9329	A(16.17.23)	126.0436	A(16.18.19)	127.2922
A(16,18,22)	122.0369	A(19,18,22)	110.6704	A(18,19,20)	113.0751
A(18,19,48)	122.6835	A(20,19,48)	124.241	A(19,20,21)	112.953
A(19,20,54)	123.7593	A(21,20,54)	123.2877	A(20,21,22)	111.8319
A(20,21,55)	128.5624	A(22,21,55)	119.6037	A(18,22,21)	91.4686
A(25,24,29)	120.7728	A(25,24,56)	119.1753	A(29,24,56)	120.0519
A(24,25,26)	120.7258	A(24,25,57)	119.1876	A(26,25,57)	120.0865
A(25,26,27)	120.3313	A(25,26,58)	122.1797	A(27,26,58)	117.489
A(26,27,28)	118.9304	A(26,27,30)	119.4809	A(28,27,30)	121.5887
A(27,28,29)	118.9098	A(27,28,33)	121.5622	A(29,28,33)	119.528
A(24,29,28)	120.3298	A(24,29,59)	122.1423	A(28,29,59)	117.5279
A(27,30,31)	117.4489	A(30,31,32)	118.7364	A(32,31,34)	120.3548
A(31,32,33)	121.1345	A(31,32,37)	120.2248	A(33,32,37)	118.6406
A(28,33,32)	117.3567	A(31,34,35)	118.4641	A(31,34,60)	119.2495
A(35,34,60)	122.2863	A(34,35,36)	120.4561	A(34,35,38)	129.7226
A(36,35,38)	109.8212	A(35,36,37)	123.2686	A(35,36,40)	104.6125
A(37,36,40)	132.1185	A(32,37,36)	117.2315	A(32,37,61)	119.0431
A(36,37,61)	123.7253	A(35,38,39)	105.176	A(38,39,40)	113.6767
A(38,39,41)	122.8132	A(40,39,41)	123.5097	A(36,40,39)	106.7119
A(36,40,46)	124.5837	A(39,40,46)	128.6451	A(39,41,42)	125.5604
A(39,41,45)	123.685	A(42,41,45)	110.7545	A(41,42,43)	113.1554
A(41,42,62)	121.5211	A(43,42,62)	125.3234	A(42,43,44)	112.7957
A(42,43,63)	123.9038	A(44,43,63)	123.3004	A(43,44,45)	111.9142
A(43,44,64)	128.4471	A(45,44,64)	119.6387	A(41,45,44)	91.3801
A(41,45,48)	79.3565	A(44,45,48)	145.0939		

Table S5 DFT computed selected bond angles for IM-Ag $^+$.

Fig. S14 ESI-MS spectrum of IM.

Fig. S15 ESI-MS spectrum of IM-Ag⁺.

Fig. S16 The Job's plot examined between Ag⁺ and IM, indicating the 2 : 1 stoichiometry, which was carried out by fluorescence spectra ($\lambda ex = 400 \text{ nm}$).

Fig. S17 ¹H NMR spectra of compound IM.

Fig. S18 ¹³C NMR spectra of compound IM.

References

[1] C. Liu, S. Huang, H. Yao, S. He, Y. Lu, L. Zhao, X. Zeng, *RSC Adv.*, 2014, 4, 16109–16114.

[2] Y. -T. Wu, J. -L. Zhao, L. Mu, X. Zeng, G. Wei, C. Redshaw, Z. Jin, *Sens. and Actuators B: Chem.*, 2017, **252**, 1089-1097.

[3] C. Chen, H. Liu, B. Zhang, Y. Wang, K. Cai, Y. Tan, C. Gao, H. Liu, C. Tan, Y. Jiang, *Tetrahedron*, 2016, **72**, 3980–3985.

[4] Y. Jiang, W. Kong, Y. Shen, B. Wang, Tetrahedron, 2015, 71, 5584–5588.

[5] T. -B. Wei, H. L. Zhang, W. T. Li, W. J. Qu, J. X. Su, Q. Lin, Y. M. Zhang and H. Yao, *Chin. J. Chem.*, 2017, **35**, 1311-1316.