Supporting Information

1,3-Dipolar [3+3] Cycloaddition of α-Halohydroxamate-based Azaoxyallyl Cations with Hydrazonoyl Chloride-derived Nitrile Imines

Hong-Wu Zhao,* Yu-Di Zhao, Yue-Yang Liu, Li-Jiao Zhao, Xiu-Qing Song, Xiao-Qin Chen, Hai-Liang Pang, Juan Du, Ning-Ning Feng

College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, P.R. China; *Phone: 86-10-6739-6211; Fax: 86-10-6739-6211; Email: hwzhao@bjut.edu.cn*

Table of Contents

1. General Information	S2
2. General Procedure	S2
3. Screening of ratios of 1a/2a /Et ₃ N	S2
4. Characterization	S2
5. ¹ H and ¹³ C NMR spectra	
6. X-ray crystal data of compound (Z)-3ae	S35
7. Computational methods	S37
8. References	S52

1. General Information

Proton (¹H) and carbon (¹³C) NMR spectra were recorded on 400 MHz instrument (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR) and calibrated using tetramethylsilane (TMS) as internal reference. High resolution mass spectra (HRMS) were recorded under electrospray ionization (ESI) conditions. The melting point of compounds was determined by a melting point instrument. Flash column chromatography was performed on silica gel (0.035-0.070 mm) using compressed air. Thin layer chromatography (TLC) was carried out on 0.25 mm SDS silica gel coated glass plates (60F254). Eluted plates were visualized using a 254 nm UV lamp. Unless otherwise indicated, all reagents were commercially available and used without further purification. All solvents were distilled from the appropriate drying agents immediately before using. α -Halohydroxamates **1a-1f** and hydrazonoyl chlorides **2a-2n** were prepared according to literature procedures.¹⁻⁵

2. General Procedure

To a stirred solution of α -halohydroxamate **1** (2.0 equiv, 0.2 mmol) in 0.5 mL of HFIP was added hydrazonoyl chlorides **2** (1.0 equiv, 0.1 mmol), followed by Et₃N (3.0 equiv, 0.3 mmol). The resulted reaction mixture was stirred at room temperature for 1.5-12 h. After the reaction was completed as indicated by TLC plate, the solvent was removed by evaporation and the crude product was purified by flash column chromatography on silica gel (petroleum ether / ethyl acetate = 80:1) to afford products **3** (24-96% yields).

O Br H 1a	CI BNO ⁻¹ N 2a HFIP t	N N N 3aa		
Entry	Equivalent ratio	Time(h)	Yield ^b (%)	
	(1a / 2a / Et ₃ N)			
1	1.5:1:2.5	1.5	60	
2	2:1:3	1.5	67	
3	2.5:1:3.5	1.5	67	
4	1.8:1:2.8	1.5	64	
5	2:1:3.5	1.5	67	
6	2:1:2.5	1.5	65	

3.Screening of ratios of 1a/2a/Et₃N.^a

^aUnless otherwise noted, reactions were carried out with **1a** and **2a** in the presence of Et_3N in 0.5 mL of HFIP at the indicated equivalent ratios of **1a/2a**/ Et_3N at room temperature. ^bIsolated yield.

4. Characterization

(Z)-5,5-dimethyl-2,4-diphenyl-4H-1,3,4-oxadiazin-6(5H)-one O-benzyl oxime (3aa):

White solid, yield: 25.9 mg, 67%; M.P.=103.7-105.2 °C; ¹H NMR (400 MHz,CDCl₃): δ 8.02-7.99 (m, 2H), 7.51 (d, *J*=7.2 Hz, 2H), 7.46-7.42 (m, 6H), 7.40-7.36 (m, 4H), 7.32-7.28 (m, 1H), 5.19 (s, 2H), 1.38 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.6, 144.9, 141.3, 137.8, 130.1, 129.7, 128.4, 128.4, 128.3, 127.9, 127.8, 126.4, 125.6, 76.7, 55.6, 20.8 ppm; HRMS (ESI) calculated for

 $C_{24}H_{24}N_3O_2 [M + H]^+$: 386.1866, found 386.1863.

(Z)-5,5-dimethyl-4-phenyl-2-(o-tolyl)-4H-1,3,4-oxadiazin-6(5H)-one O-benzyl oxime (3ab):

Light yellow solid, yield: 15.5 mg, 39%; M.P.=102.8-103.9 °C; ¹H NMR (400 MHz,CDCl₃): δ 7.90 (d, *J*=8.4 Hz, 2H), 7.51 (d, *J*=7.2 Hz, 2H), 7.46-7.42 (m, 3H), 7.40-7.36 (m, 4H), 7.32-7.28 (m, 1H), 7.24 (d, *J*=8.0 Hz, 2H), 5.19 (s, 2H), 2.43 (s, 3H), 1.37 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.8, 145.0, 141.5, 139.9, 137.8, 129.1, 128.4, 128.3, 128.2, 127.9, 127.8, 127.3, 126.3, 125.6, 76.6, 55.6,

21.5, 20.7 ppm; HRMS (ESI) calculated for $C_{25}H_{26}N_3O_2$ [M + H]⁺: 400.2020, found 400.2016.

(Z)-2-(2-chlorophenyl)-5,5-dimethyl-4-phenyl-4*H*-1,3,4-oxadiazin-6(5*H*)-one O-benzyl oxime (3ac):

Yellow oil, yield: 10.2 mg, 24%; ¹H NMR (400 MHz,CDCl₃): δ 7.71-7.68 (m, 1H), 7.48-7.44 (m, 3H), 7.41-7.38 (m, 3H), 7.36-7.33 (m, 4H), 7.32-7.31 (m, 2H), 7.29-7.25 (m, 1H), 5.13 (s, 2H), 1.40 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.5, 144.5, 140.6, 137.7, 133.2, 133.0, 131.0, 130.7, 130.5, 129.9, 129.8, 128.4, 128.3, 128.2, 128.1, 127.8, 126.7, 126.4, 123.7, 119.7, 76.6, 55.4, 20.6 ppm; HRMS

(ESI) calculated for $C_{24}H_{23}CIN_3O_2 [M + H]^+$: 420.1473, found 420.1473.

(Z)-5,5-dimethyl-4-phenyl-2-(m-tolyl)-4H-1,3,4-oxadiazin-6(5H)-one O-benzyl oxime (3ad):

Yellow oil, yield: 20.2 mg, 51%; ¹H NMR (400 MHz,CDCl₃): δ 7.81 (d, *J*=8.4 Hz, 2H), 7.53-7.51 (m, 2H), 7.46-7.41 (m, 5H), 7.38 (d, *J*=7.2 Hz, 2H), 7.35-7.29 (m, 2H), 7.28-7.25 (m, 1H), 5.20 (s, 2H), 2.43 (s, 3H), 1.37 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.7, 144.9, 141.5, 138.0, 137.8, 130.6, 130.0, 128.4, 128.3, 128.2, 127.9, 127.8, 126.4, 126.1, 122.8, 76.6, 55.6, 21.5, 20.7 ppm; HRMS (ESI)

calculated for $C_{25}H_{26}N_3O_2 [M + H]^+$: 400.2020, found 400.2012.

(Z)-2-(3-chlorophenyl)-5,5-dimethyl-4-phenyl-*4H*-1,3,4-oxadiazin-6(*5H*)-one O-benzyl oxime (3ae):

White solid, yield: 36.9 mg, 88%; M.P.=111.3-113.0 °C; ¹H NMR (400 MHz,CDCl₃): δ 7.98 (s, 1H), 7.86 (d, *J*=7.2 Hz, 1H), 7.51 (d, *J*=6.8 Hz, 2H), 7.46-7.39 (m, 6H), 7.36-7.30 (m, 4H), 5.19 (s, 2H), 1.37 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 144.6, 140.0, 137.7, 134.5, 131.9, 129.7, 129.6, 128.5, 128.4, 128.3, 127.9, 127.8, 126.6, 125.5, 123.6, 76.7, 55.7, 20.8 ppm; HRMS (ESI)

calculated for $C_{24}H_{23}CIN_3O_2 [M + H]^+$: 420.1477, found 420.1473.

(Z)-2-(3-fluorophenyl)-5,5-dimethyl-4-phenyl-4*H*-1,3,4-oxadiazin-6(5*H*)-one O-benzyl oxime (3af):

White solid, yield: 35.9 mg, 89%; M.P.=74.1-75.3 °C; ¹H NMR (400 MHz,CDCl₃): δ 7.76 (d, *J*=8.0 Hz, 1H), 7.67 (d, *J*=9.6 Hz, 1H), 7.49 (d, *J*=7.2 Hz, 2H), 7.45-7.39 (m, 5H), 7.37-7.28 (m, 4H), 7.14-7.09 (m, 1H), 5.17 (s, 2H), 1.36 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.0, 161.6, 150.2, 144.6, 140.2, 140.1, 137.7, 132.4, 132.3, 129.9, 129.8, 128.4, 128.3, 128.2, 127.9, 127.8, 126.5, 121.2,

121.1, 116.7, 116.5, 112.6, 112.4, 76.7, 55.7, 20.8 ppm; HRMS (ESI) calculated for $C_{24}H_{23}FN_3O_2$ [M + H]⁺: 404.1769, found 404.1766.

(Z)-2-(3-bromophenyl)-5,5-dimethyl-4-phenyl-4H-1,3,4-oxadiazin-6(5H)-one O-benzyl oxime (3ag):

White oil, yield: 42.2 mg, 91%; ¹H NMR (400 MHz,CDCl₃): δ 8.08 (s, 1H), 7.84 (d, *J*=8.0 Hz, 1H), 7.49-7.44 (m, 3H), 7.39-7.32 (m, 5H), 7.29-7.22 (m, 4H), 5.12 (s, 2H), 1.30 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.1, 144.5, 139.8, 137.7, 132.6, 132.1, 129.9, 128.5, 128.4, 128.3, 128.0, 127.8, 126.6, 124.1, 122.6, 76.7, 55.7, 20.8 ppm; HRMS (ESI) calculated for C₂₄H₂₃BrN₃O₂ [M + H]⁺: 464.0968,

found 464.0960.

(Z)-5,5-dimethyl-2-(3-nitrophenyl)-4-phenyl-4*H*-1,3,4-oxadiazin-6(5*H*)-one O-benzyl oxime (3ah):

Yellow solid, yield: 41.3 mg, 96%; M.P.=121.9-123.6 °C; ¹H NMR (400 MHz,CDCl₃): δ 8.74 (s, 1H), 8.22-8.20 (m, 2H), 7.54 (d, *J*=8.0 Hz, 1H), 7.46 (d, *J*=7.2 Hz, 2H), 7.41-7.37 (m, 4H), 7.33-7.29 (m, 4H), 5.14 (s, 2H), 1.34 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.7, 148,5, 144.2, 139.1, 137.5, 131.9, 131.0, 129.5, 128.6, 128.4, 128.0, 127.8, 126.8, 124.1, 120.5, 76.8, 55.8, 20.9 ppm;

HRMS (ESI) calculated for $C_{24}H_{23}N_4O_4 [M + H]^+$: 431.1714, found 431.1717.

(Z)-5,5-dimethyl-4-phenyl-2-(p-tolyl)-4H-1,3,4-oxadiazin-6(5H)-one O-benzyl oxime (3ai):

Yellow solid, yield: 18.0 mg, 45%; M.P.=118.2-120.0 °C; ¹H NMR (400 MHz,CDCl₃): δ 7.88 (d, *J*=8.4 Hz, 2H), 7.51 (d, *J*=7.2 Hz, 2H), 7.44 (d, *J*=7.2 Hz, 2H), 7.40 (d, *J*=8.0 Hz, 2H), 7.36 (d, *J*=7.6 Hz, 3H), 7.31-7.28 (m, 1H), 7.23 (d, *J*=8.0 Hz, 2H), 5.18 (s, 2H), 2.42 (s, 3H), 1.36 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.7, 145.0, 141.5, 139.9, 137.8, 129.1, 128.4, 128.3, 128.2, 127.9,

127.8, 127.3, 126.3, 125.6, 76.6, 55.6, 21.5, 20.7 ppm; HRMS (ESI) calculated for $C_{25}H_{26}N_3O_2$ [M + H]⁺: 400.2020, found 400.2008.

(Z)-2-(4-chlorophenyl)-5,5-dimethyl-4-phenyl-*4H*-1,3,4-oxadiazin-6(*5H*)-one O-benzyl oxime (3aj):

White solid, yield: 28.3 mg, 68%; M.P.=112.5-114.2 °C; ¹H NMR (400 MHz,CDCl₃): δ 7.90 (d, *J*=8.4 Hz, 2H), 7.49 (d, *J*=6.8 Hz, 2H), 7.44-7.37 (m, 7H), 7.35-7.28 (m, 3H), 5.17 (s, 2H), 1.36 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 144.7, 140.4, 137.6, 135.7, 128.6, 128.4, 128.3, 127.9, 127.8, 126.8, 126.5, 76.7, 55.6, 20.8 ppm; HRMS (ESI) calculated for C₂₄H₂₃ClN₃O₂ [M + H]⁺:

420.1478, found 420.1473.

(Z)-2-(4-fluorophenyl)-5,5-dimethyl-4-phenyl-4*H*-1,3,4-oxadiazin-6(5*H*)-one O-benzyl oxime (3ak):

Yellow solid, yield: 27.5 mg, 67%; M.P.=97.9-99.3 °C; ¹H NMR (400 MHz,CDCl₃): δ 7.93-7.90 (m, 2H), 7.45 (d, *J*=7.2 Hz, 2H), 7.40-7.33 (m, 5H), 7.30-7.24 (m, 3H), 7.06 (t, *J*=8.8 Hz, 2H), 5.12 (s, 2H), 1.31 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 165.1, 162.6, 150.4, 144.8, 140.6, 137.7, 128.4, 128.0, 127.8, 127.7, 127.6, 126.4, 126.3, 126.2, 115.6, 115.3, 76.7, 55.6, 20.8 ppm; HRMS (ESI)

calculated for $C_{24}H_{23}FN_3O_2 [M + H]^+$: 404.1769, found 404.1761.

(Z)-5,5-dimethyl-4-phenyl-2-(4-(trifluoromethyl)phenyl)-4H-1,3,4-oxadiazin-6(5H)-one O-benzyl oxime (3al):

White solid, yield: 39.2 mg, 87%; M.P.=130.1-131.3 °C; ¹H NMR (400 MHz,CDCl₃): δ 8.07 (d, *J*=8.4 Hz, 2H), 7.66 (d, *J*=8.4 Hz, 2H), 7.49 (d, *J*=7.2 Hz, 2H), 7.45-7.38 (m, 5H), 7.40-7.30 (m, 3H), 5.18 (s, 2H), 1.38 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.0, 144.4, 139.9, 137.6, 133.4, 131.4, 131.1, 128.5, 128.4, 128.0, 127.8, 126.6, 125.7, 125.4, 125.3, 125.2, 122.7, 76.7, 55.7, 20.8 ppm; HRMS (ESI) calculated for C₂₅H₂₃F₃N₃O₂ [M + H]⁺: 454.1737, found 454.1733.

(Z)-5,5-dimethyl-2-(4-nitrophenyl)-4-phenyl-4*H*-1,3,4-oxadiazin-6(5*H*)-one O-benzyl oxime (3am):

Yellow solid, yield: 41.0 mg, 95%; M.P.=130.5-132.1 °C; ¹H NMR (400 MHz,CDCl₃): δ 8.22 (d, *J*=9.2 Hz, 2H), 8.06 (d, *J*=8.8 Hz, 2H), 7.47-7.45 (m, 2H), 7.42 (t, *J*=1.6 Hz, 1H), 7.39 (d, *J*=1.6 Hz, 2H), 7.38-7.35 (m, 2H), 7.32-7.30 (m, 2H), 7.28 (s, 1H), 5.14 (s, 2H), 1.35 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.5, 148.2, 144.1, 139.1, 137.4, 135.9, 128.6, 128.5, 128.4, 128.1, 127.8, 126.9, 126.0, 123.7, 76.8, 55.9, 53.5, 21.0 ppm; HRMS (ESI) calculated for C₂₄H₂₃N₄O₄

 $[M + H]^+$: 431.1714, found 431.1708.

(Z)-2-isopropyl-5,5-dimethyl-4-phenyl-4H-1,3,4-oxadiazin-6(5H)-one O-benzyl oxime (3an):

White solid, yield: 11.8 mg, 34%; M.P.=93.2-94.8 °C; ¹H NMR (400 MHz,CDCl₃): δ 7.49-7.36 (m, 4H), 7.36-7.33 (m, 3H), 7.28-7.23 (m, 3H), 5.10 (s, 2H), 2.80-2.69 (m, 1H), 1.30 (s, 3H), 1.28 (s, 3H), 1.24 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 151.1, 148.8, 145.1, 137.8, 128.3, 128.2, 128.1, 127.8, 127.5,

126.1, 76.5,55.0, 31.5, 20.2, 19.7 ppm; HRMS (ESI) calculated for $C_{21}H_{26}N_3O_2$ [M + H]⁺: 352.2020, found 352.2017.

(Z)-5,5-dimethyl-2-(3-nitrophenyl)-4-phenyl-4*H*-1,3,4-oxadiazin-6(5*H*)-one O-methyl oxime (3bh):

Yellow solid, yield: 33.3 mg, 94%; M.P.=116.6-117.3 °C; ¹H NMR (400 MHz,CDCl₃): δ 8.74 (s, 1H), 8.25-8.23 (m, 2H), 7.57 (t, *J*=8.0 Hz, 1H), 7.42-7.38 (m, 2H), 7.31 (d, *J*=7.2 Hz, 3H), 3.94 (s, 3H), 1.36 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.3, 148.5, 144.2, 139.0, 131.9, 131.0, 129.4, 128.5, 127.8, 126.8, 124.1, 120.4, 62.8, 55.7, 20.8 ppm; HRMS (ESI) calculated for C₁₈H₁₉N₄O₄

 $[M + H]^+$: 355.1401, found 355.1398.

(Z)-2-(3-nitrophenyl)-4,5-diphenyl-4H-1,3,4-oxadiazin-6(5H)-one O-benzyl oxime (3ch):

Yellow oil, yield: 25.8 mg, 54%; ¹H NMR (400 MHz,CDCl₃): δ 8.76 (s, 1H), 8.22-8.17 (m, 2H), 7.54-7.45 (m, 3H), 7.40-7.39 (m, 2H), 7.37-7.31 (m, 4H), 7.24-7.21 (m, 6H), 6.99-6.96 (m, 1H), 5.92 (s, 1H), 5.19 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 153.1, 148.5, 144.5, 144.4, 143.9, 138.5, 138.2, 137.5, 136.6, 133.6, 133.1, 131.6, 131.5, 131.0, 130.8, 129.5, 129.4, 129.3, 129.1, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 126.8, 126.4, 124.1, 121.7, 121.6, 120.5, 120.3,

114.1, 113.9, 76.9, 76.8, 54.6, 50.9 ppm; HRMS (ESI) calculated for $C_{28}H_{23}N_4O_4$ [M + H]⁺: 479.1714, found 479.1711.

(Z)-3-(3-nitrophenyl)-1-phenyl-4-oxa-1,2-diazaspiro[5.5]undec-2-en-5-one O-benzyl oxime (3dh):

Yellow solid, yield: 42.1 mg, 90%; M.P.=141.9-143.5 °C; ¹H NMR (400 MHz,CDCl₃): δ 8.72 (s, 1H), 8.21-8.19 (m, 2H), 7.53 (t, *J*=8.0 Hz, 1H), 7.48-7.46 (m, 2H), 7.41-7.36 (m, 4H), 7.34-7.26 (m, 4H), 5.18 (s, 2H), 2.09 (d, *J*=12.4 Hz, 2H), 1.62-1.52 (m, 5H), 1.33-1.25 (m, 2H), 0.89-0.86 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 148.4, 147.3, 143.7, 138.8, 137.8, 131.9, 131.0, 129.4, 128.6,

128.5, 128.4, 128.0, 126.7, 123.9, 120.4, 76.7, 59.3, 28.8, 25.3, 22.7 ppm; HRMS (ESI) calculated for $C_{27}H_{27}N_4O_4 [M + H]^+$: 471.2027, found 471.2025.

(Z)-5-methyl-2-(3-nitrophenyl)-4-phenyl-4H-1,3,4-oxadiazin-6(5H)-one O-benzyl oxime (3eh):

Yellow oil, yield: 10.9 mg, 25%; ¹H NMR (400 MHz,CDCl₃): δ 8.85 (s, 1H), 8.33-8.26 (m, 2H), 7.65-7.61 (m, 1H), 7.47 (d, *J*=6.8 Hz, 2H), 7.44-7.36 (m, 5H), 7.32 (d, *J*=8.0 Hz, 2H), 7.05 (t, *J*=7.2 Hz, 1H), 5.19-5.12 (m, 2H), 4.95-4.90 (m, 1H), 1.34 (d, *J*=6.4 Hz, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 148.6, 145.5, 144.0, 138.1, 137.3, 131.7, 131.0, 130.9, 129.6, 129.5, 128.6, 128.5, 128.2, 128.1,

124.2, 121.9, 120.5, 114.6, 76.7, 47.4, 13.1 ppm; HRMS (ESI) calculated for $C_{23}H_{21}N_4O_4$ [M + H]⁺: 417.1557, found 417.1554.

(Z)-5,5-dimethyl-2,4-diphenyl-4H-1,3,4-oxadiazin-6(5H)-one O-methyl oxime (3ba):

White oil, yield: 18.9 mg, 62%; ¹H NMR (400 MHz,CDCl₃): δ 8.01-7.99 (m, 2H), 7.44-7.42 (m, 4H), 7.40-7.36 (m, 3H), 7.32-7.28 (m, 1H), 3.98 (s, 3H), 1.39 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 144.9, 141.2, 130.1, 129.8, 128.4, 128.3, 127.8, 126.4, 125.6, 62.7, 55.5, 20.7 ppm; HRMS (ESI) calculated for C₁₈H₂₀N₃O₂ [M + H]⁺: 310.1550, found 310.1546.

(Z)-2,4,5-triphenyl-4H-1,3,4-oxadiazin-6(5H)-one O-benzyl oxime (3ca):

White solid, yield: 14.3 mg, 33%; M.P.=149.3-151.2 °C; ¹H NMR (400 MHz,CDCl₃): δ 8.03-8.01 (m, 2H), 7.50 (d, *J*=6.8 Hz, 2H), 7.44-7.42 (m, 5H), 7.38-7.33 (m, 3H), 7.28 (d, *J*=7.2 Hz, 7H), 6.99 (t, *J*=7.2 Hz, 1H), 5.95 (s, 1H), 5.24 (s, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 144.9, 144.8, 140.3, 137.7, 133.5, 129.8, 129.7, 129.3, 129.1, 129.0, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 126.9, 126.6, 125.6, 125.5, 121.0, 113.9, 113.7, 76.7, 54.4 ppm; HRMS (ESI)

calculated for $C_{28}H_{24}N_3O_2 [M + H]^+$: 434.1863, found 434.1860.

(Z)-1,3-diphenyl-4-oxa-1,2-diazaspiro[5.5]undec-2-en-5-one O-benzyl oxime (3da):

White solid, yield: 11.4 mg, 27%; M.P.=118.0-119.0 °C; ¹H NMR (400 MHz,CDCl₃): δ 7.99-7.96 (m, 2H), 7.51 (d, *J*=7.2 Hz, 2H), 7.44-7.40 (m, 6H), 7.38-7.36 (m, 1H), 7.34-7.29 (m, 4H), 5.22 (s, 2H), 7.16 (d, *J*=12.4 Hz, 2H), 1.66-1.51 (m, 5H), 1.36-1.28 (m, 2H), 0.96-0.92 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 148.2, 144.4, 141.1, 138.2, 130.0, 129.6, 128.6, 128.4, 128.3, 128.2,

128.1, 127.8, 126.3, 125.6, 76.6, 59.0, 28.7, 25.4, 22.8 ppm; HRMS (ESI) calculated for $C_{27}H_{28}N_3O_2$ $[M + H]^+$: 426.2176, found 426.2179.

(Z)-2-(3-bromophenyl)-5,5-dimethyl-4-phenyl-4H-1,3,4-oxadiazin-6(5H)-one O-methyl oxime (3bg):

White oil, yield: 34.1 mg, 88%; ¹H NMR (400 MHz,CDCl₃): δ 8.07 (s, 1H), 7.86 (d, *J*=8.0 Hz, 1H), 7.50 (d, *J*=8.0 Hz, 1H), 7.40-7.36 (m, 2H), 7.31-7.25 (m, 4H), 3.93 (s, 3H), 1.33 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.8, 144.5, 139.7, 132.6, 132.0, 129.9, 128.5, 128.3, 127.8, 126.6, 124.1, 122.5, 62.7, 55.5, 20.7 ppm; HRMS (ESI) calculated for C₁₈H₁₉BrN₃O₂ [M + H]⁺: 388.0655, found 388.0655.

(Z)-3-(3-bromophenyl)-1-phenyl-4-oxa-1,2-diazaspiro[5.5]undec-2-en-5-one O-benzyl oxime (3dg):

White oil, yield: 29.4 mg, 58%; ¹H NMR (400 MHz,CDCl₃): δ 8.05 (s, 1H), 7.84-7.82 (m, 1H), 7.49-7.45 (m, 3H), 7.39-7.34 (m, 5H), 7.27-7.22 (m, 4H), 5.16 (s, 2H), 2.08 (d, *J*=12.4 Hz, 2H), 1.56-1.49 (m, 5H), 1.30-1.22 (m, 2H), 0.88-0.84 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 147.7, 144.0, 139.6, 138.0, 132.5, 132.0, 129.9, 128.6, 128.5, 128.4, 128.3, 128.2, 127.9, 126.5, 124.0, 122.5, 76.6,

59.1, 28.7, 25.4, 22.8 ppm; HRMS (ESI) calculated for $C_{27}H_{27}BrN_3O_2$ [M + H]⁺: 504.1281, found 504.1279.

(Z)-2-(3-chlorophenyl)-5,5-dimethyl-4-phenyl-*4H*-1,3,4-oxadiazin-6(*5H*)-one O-methyl oxime (3be):

White oil, yield: 25.6 mg, 75%; ¹H NMR (400 MHz,CDCl₃): δ 7.92 (s, 1H), 7.83-7.80 (m, 1H), 7.40-7.34 (m, 3H), 7.33-7.31 (m, 2H), 7.29-7.24 (m, 2H), 3.93 (s, 3H), 1.33 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.8, 144.5, 139.9, 134.5, 131.8, 129.7, 129.6, 128.5, 127.8, 126.6, 125.5, 123.6, 62.7, 55.5, 20.7 ppm; HRMS (ESI) calculated for C₁₈H₁₉ClN₃O₂ [M + H]⁺: 344.1160, found 344.1158.

(Z)-2-(3-fluorophenyl)-5,5-dimethyl-4-phenyl-4*H*-1,3,4-oxadiazin-6(5*H*)-one O-methyl oxime (3bf):

White oil, yield: 26.7 mg, 82%; ¹H NMR (400 MHz,CDCl₃): δ 7.71 (d, *J*=7.6 Hz, 1H), 7.65-7.62 (m, 1H), 7.39-7.33 (m, 3H), 7.31-7.24 (m, 3H), 7.09-7.05 (m, 1H), 3.92 (s, 3H), 1.33 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.0, 161.6, 149.8, 144.6, 140.1, 140.0, 132.3, 132.2, 130.0, 129.9, 128.4, 127.8, 126.5, 121.2, 121.1, 116.7, 116.5, 112.6, 112.4, 62.7, 55.5, 20.7 ppm; HRMS (ESI) calculated for

 $C_{18}H_{19}FN_{3}O_{2}[M + H]^{+}: 328.1456$, found 328.1451.

(Z)-5,5-dimethyl-4-phenyl-2-(4-(trifluoromethyl)phenyl)-4H-1,3,4-oxadiazin-6(5H)-one O-methyl oxime (3bl):

White oil, yield: 34.1 mg, 90%; M.P.=84.5-84.9 °C; ¹H NMR (400 MHz,CDCl₃): δ 8.04 (d, *J*=8.4 Hz, 2H), 7.63 (d, *J*=8.4 Hz, 2H), 7.41-7.37 (m, 2H), 7.31-7.27 (m, 3H), 3.93 (s, 3H), 1.35 (s, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 149.6, 144.4, 139.8, 133.4, 131.4, 131.1, 128.5, 127.8, 126.7, 125.7, 125.5, 125.4, 125.3, 125.2, 125.1, 122.7, 76.7, 62.7, 55.6, 20.8 ppm; HRMS (ESI) calculated for C₁₉H₁₉F₃N₃O₂

 $[M + H]^+$: 378.1424, found 378.1424.

5. ¹H and ¹³C NMR spectra

S13

S14

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

ppm

S32

S33

6. X-Ray crystal data of compound (Z)-3ae

Figure 1.X-ray single crystal structure of (Z)-3ae (with thermal ellipsoils shown at the 50% probability level)

Identification code	(Z)-3ae
Empirical formula	$C_{24}H_{22}ClN_3O_2$
Formula weight	419.89
Temperature	113 K
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 7.9332(14) A $alpha = 96.881(4)$ deg. $b = 10.9116(18)$ A $beta = 92.036(2)$ deg. $c = 12.9665(19)$ A $gamma = 109.013(5)$ deg.
Volume	1050.2(3) A^3
Z, Calculated density	2, 1.328 g/cm^3
Absorption coefficient	0.208 mm^-1
F(000)	440.0
Crystal size	$0.2\times0.18\times0.14\ mm^3$
Radiation	MoKa ($\lambda = 0.71073$)
Theta range for data collection	6.084 to 55.034 deg.
Index ranges	$-10 \leqslant h \leqslant 10, -13 \leqslant k \leqslant 14, -16 \leqslant l \leqslant 16$

Reflections collected / uniqueIndependent reflections	13555 / 4737 [Rint = 0.0248, Rsigma = 0.0237]
Data / restraints / parameters	4737/84/313
Goodness-of-fit on F^2	1.027
Final R indices [I>2sigma(I)]	R1 = 0.0334, wR2 = 0.0867
R indices (all data)	R1 = 0.0399, wR2 = 0.0905
Largest diff. peak and hole	0.30/-0.29 e.A^-3

7. Computational methods

(1) The geometric structures of all reactants, transition states (TS), intermediates (Int) and products were optimized by the density functional theory (DFT) method with the hybrid functional B3LYP⁶⁻⁸ at the 6-31+G(d) theoretical level. The analytical computations of vibrational frequencies were performed for all stationary points to verify either that they were energy minima with all positive frequencies or that they were transition states with only one imaginary frequency. The intrinsic reaction coordinate (IRC) calculations were performed to confirm that every transition state connects the corresponding reactant and product through the minimized-energy pathway. Cartesian coordinates, the number of imaginary frequencies and computed thermochemical values of the optimized geometries are provided in the Supporting Information. All computations presented in this work were performed with GAUSSIAN 09 program package.

Cartesian coordinates, the number of imaginary frequencies and computed thermochemical values of the optimized structures

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	-1.836762	0. 989761	0. 514411
2	8	0	-0.117040	-0.513872	-0.944107
3	7	0	-1.515820	-0.882075	-0.877111
4	6	0	-3.756535	-0.241215	-0.207362
5	6	0	-4.255154	-0.644247	1.181481
6	1	0	-5.345361	-0.753897	1.210539
7	1	0	-3.961780	0.155736	1.866003
8	1	0	-3.793493	-1.572326	1.530007
9	6	0	-4.462615	1.033856	-0.687192
10	1	0	-4.163839	1.307369	-1.705607
11	1	0	-4.166739	1.855233	-0.031323
12	1	0	-5.551745	0.912677	-0.657161
13	6	0	-2.203461	0.008374	-0.166645
14	6	0	0.591731	-0.944849	0.222863
15	1	0	0.613318	-2.045346	0.262646
16	1	0	0.071424	-0.569627	1.112517
17	6	0	1.989542	-0.381370	0.154479
18	6	0	3.109462	-1.212922	0.037308
19	1	0	2.972051	-2.291616	-0.011997
20	6	0	4.399975	-0.673231	-0.012672
21	1	0	5.260638	-1.332805	-0.098178
22	6	0	4.579611	0.710631	0.045037
23	1	0	5.580817	1.133682	0.006800
24	6	0	3.464397	1.550671	0.154585
25	1	0	3. 599101	2.628921	0.201886
26	6	0	2.179553	1.008778	0.210595

Structure Number: **4** SCF Energy at B3LYP/6-31+G(d) theoretical level: -632.11403938 (Hartrees)

27 1 0 1.307747 1.652	560 0. 296351
-----------------------------------	---------------

Zero-point correction=	0.219653 (Hartree/Particle)
Thermal correction to Energy=	0. 233526
Thermal correction to Enthalpy=	0. 234470
Thermal correction to Gibbs Free Energy=	0. 175691
Sum of electronic and zero-point Energies=	-631.894386
Sum of electronic and thermal Energies=	-631.880513
Sum of electronic and thermal Enthalpies=	-631.879569
Sum of electronic and thermal Free Energies=	-631.938349

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	17	0	4. 269372	2. 125701	0.000034
2	7	0	-0.973275	-1.194222	-0.001371
3	7	0	-2.190125	-1.525746	-0.000717
4	6	0	0.188955	-1.028347	-0.002725
5	6	0	1.598594	-0.892921	-0.001326
6	6	0	2.434564	-2.031472	0.000368
7	1	0	1.994677	-3.023504	0.000550
8	6	0	3.816988	-1.871260	0.001787
9	1	0	4.456868	-2.749266	0.002991
10	6	0	4.396883	-0.598730	0.001709
11	1	0	5.474406	-0.474436	0.002856
12	6	0	3.559353	0.519355	0.000145
13	6	0	2.173978	0.397951	-0.001346
14	1	0	1.544362	1.280690	-0.002581
15	6	0	-3.142013	-0. 491021	-0.000154
16	6	0	-4. 490698	-0.893180	0.000732
17	1	0	-4.715450	-1.955843	0.000948
18	6	0	-5.506793	0.058597	0.001297
19	1	0	-6.543885	-0.267875	0.001971
20	6	0	-5.202711	1.425914	0.000993
21	1	0	-5.997841	2.166351	0.001454
22	6	0	-3.863792	1.827321	0.000129
23	1	0	-3.613426	2.885656	-0.000100
24	6	0	-2.835823	0.882680	-0.000440
25	1	0	-1.800138	1. 211758	-0.001069

Structure Number: **5** SCF Energy at B3LYP/6-31+G(d) theoretical level: -1070.43974016 (Hartrees)

Zero-point correction=	0.185600 (Hartree/Particle)
Thermal correction to Energy=	0. 199025
Thermal correction to Enthalpy=	0. 199969
Thermal correction to Gibbs Free Energy=	0. 142175
Sum of electronic and zero-point Energies=	-1070.254140
Sum of electronic and thermal Energies=	-1070.240715
Sum of electronic and thermal Enthalpies=	-1070.239771
Sum of electronic and thermal Free Energies=	-1070.297565

Center	Atomic	Atomic	ic Coordinates (Ar		Coordinates (Angstroms)	stroms)
Number	Number	Туре	Х	Y	Z	
1	17	0	-1.979819	5. 507204	0. 515449	
2	8	0	0.216075	-1.047569	-2.325813	
3	8	0	-1.124317	-1.913205	-0.206994	
4	7	0	1.859549	0.772485	-0.573038	
5	7	0	2.937597	0.080408	-0.743481	
6	7	0	0.256730	-2.119576	-0.222807	
7	6	0	0.835057	1.330337	-0.639793	
8	6	0	-0. 416040	2.011580	-0.721314	
9	6	0	-1.490799	1.391595	-1.392776	
10	1	0	-1.338418	0.404925	-1.827846	
11	6	0	-2.705888	2.071864	-1.466065	
12	1	0	-3.543737	1.608303	-1.976749	
13	6	0	-2.866984	3.332718	-0.883121	
14	1	0	-3.816760	3.854838	-0.938368	
15	6	0	-1.786395	3.922469	-0.219892	
16	6	0	-0.555708	3.283872	-0.130947	
17	1	0	0.275181	3.755727	0.379050	
18	6	0	3.853737	0.131214	0.339129	
19	6	0	3.485535	0.431478	1.661265	
20	1	0	2.448070	0.642392	1.901368	
21	6	0	4.453753	0.445316	2.667548	
22	1	0	4.158878	0.681674	3.686989	
23	6	0	5.788381	0.149158	2.375515	
24	1	0	6.536050	0.160744	3.162890	
25	6	0	6.152649	-0.157842	1.059386	
26	1	0	7.188678	-0.381081	0.818205	
27	6	0	5.195567	-0.163794	0.044807	
28	1	0	5.475645	-0.370998	-0.983239	
29	6	0	2.239618	-1.915125	-1.407380	
30	6	0	2.915502	-2.791599	-0.401386	
31	1	0	3.983004	-2.561709	-0.328616	
32	1	0	2.835389	-3.829319	-0.762258	
33	1	0	2.444923	-2.742853	0.579074	
34	6	0	2.870597	-1.826822	-2.759108	
35	1	0	2.439987	-1.010606	-3.340430	
36	1	0	2.631083	-2.761956	-3.289695	
37	1	0	3.959332	-1.742093	-2.700179	
38	6	0	0.776398	-1.652473	-1.367399	
39	6	0	-1.659541	-2.512120	0.976723	
40	1	0	-1.245648	-2.013899	1.864689	
41	1	0	-1.342910	-3. 565457	1.005923	
42	6	0	-3.165204	-2.403080	0.949752	
43	6	0	-3.872707	-2.043162	2.105162	

Structure Number: **TS1** SCF Energy at B3LYP/6-31+G(d) theoretical level: -1702.54919172 (Hartrees) Number of imaginary frequencies: -140.23*i* cm⁻¹

44	1	0	-3.325737	-1.797130	3.013949
45	6	0	-5.270742	-1.994336	2.103149
46	1	0	-5.803367	-1.715204	3.009397
47	6	0	-5.978127	-2.293636	0.936677
48	1	0	-7.064256	-2.252653	0.930904
49	6	0	-5.278619	-2.643935	-0.224376
50	1	0	-5.822000	-2.875115	-1.138044
51	6	0	-3.884297	-2.702187	-0.217414
52	1	0	-3.342122	-2.966976	-1.120776

Zero-point correction=	0.406264 (Hartree/Particle)
Thermal correction to Energy=	0. 434077
Thermal correction to Enthalpy=	0. 435021
Thermal correction to Gibbs Free Energy=	0. 343060
Sum of electronic and zero-point Energies=	-1702.142927
Sum of electronic and thermal Energies=	$-1702.\ 115115$
Sum of electronic and thermal Enthalpies=	-1702.114171
Sum of electronic and thermal Free Energies=	-1702.206132

Center	Atomic	Atomic	mic Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	17	0	-8.018838	-0. 005580	-1. 091279
2	8	0	1.794873	-1.319244	0.748909
3	8	0	3.698952	-0.448448	-1.131961
4	7	0	-1.994081	-0.038131	0.090360
5	7	0	-0.667201	0.026698	0.072782
6	7	0	2.408424	-0.306137	-1.321811
7	6	0	-3.118768	-0.242737	0.329658
8	6	0	-4.475907	-0.477892	0.641217
9	6	0	-4.813749	-1.026720	1.889459
10	1	0	-4.027580	-1.278044	2.619563
11	6	0	-6.155002	-1.250784	2.192898
12	1	0	-6.428670	-1.681815	3.169468
13	6	0	-7.153048	-0.935197	1.271549
14	1	0	-8.211957	-1.116131	1.520408
15	6	0	-6.807230	-0.388716	0.028462
16	6	0	-5.468868	-0.156018	-0.298123
17	1	0	-5.197003	0.272253	-1.276393
18	6	0	-0.135293	1.385939	0.105929
19	6	0	0.868375	1.642460	1.060357
20	1	0	1.265822	0.819821	1.686427
21	6	0	1.399606	2.927908	1.155761
22	1	0	2.194283	3.125460	1.891792
23	6	0	0.945761	3.949637	0.323857
24	1	0	1.374236	4.959662	0.407253
25	6	0	-0.041042	3.688029	-0.626911
26	1	0	-0.386615	4. 489094	-1.297078
27	6	0	-0.582635	2.410786	-0.746265
28	1	0	-1.341734	2.215365	-1.518065
29	6	0	0.050977	-0.910387	-0.875827
30	6	0	-0.160668	-0.539486	-2.337800
31	1	0	-1.224408	-0.704239	-2.638934
32	1	0	0. 492241	-1.190441	-2.970541
33	1	0	0.117363	0.524030	-2. 537083
34	6	0	-0.391337	-2.357970	-0.661816
35	1	0	-0.273827	-2.652446	0.410085
36	1	0	0.287341	-3.006867	-1.269758
37	1	0	-1.441605	-2.530027	-0.995400
38	6	0	1.582475	-0.867032	-0. 414109
39	6	0	4.299527	0.239039	0.001082
40	1	0	3.721282	0.006085	0.936912
41	1	0	4.274973	1.343643	-0.193142
42	6	0	5.700898	-0.247593	0.142393
43	6	0	6.706647	0.636773	0.549771
44	1	0	6.466822	1.695909	0.722256

Structure Number: Int1 SCF Energy at B3LYP/6-31+G(d) theoretical level: -1702.56622518 (Hartrees)

45	6	0	8.010273	0.179598	0.734879
46	1	0	8.795052	0.878102	1.058355
47	6	0	8.320778	-1.160877	0.508234
48	1	0	9.348753	-1.520096	0.655863
49	6	0	7.323886	-2.043637	0.092102
50	1	0	7.567442	-3.099895	-0.091215
51	6	0	6.018436	-1.590828	-0.090129
52	1	0	5.222869	-2.275817	-0. 423706

Zero-point correction=	0.409236 (Hartree/Particle)
Thermal correction to Energy=	0. 436912
Thermal correction to Enthalpy=	0. 437856
Thermal correction to Gibbs Free Energy=	0.346186
Sum of electronic and zero-point Energies=	$-1702.\ 156990$
Sum of electronic and thermal Energies=	-1702.129313
Sum of electronic and thermal Enthalpies=	-1702.128369
Sum of electronic and thermal Free Energies=	-1702.220039

Center	Atomic	Atomic	Coor	dinates (Angs	stroms)
Number	Number	Туре	Х	Υ	Ζ
1	17	0	-3.088620	5.280017	-0. 413587
2	8	0	0.410284	-0.018227	0.332827
3	8	0	2.606169	-1.257351	0.158849
4	7	0	-1.891888	0.027814	-0.148282
5	7	0	-1.897044	-1.349792	-0.207054
6	7	0	1.480657	-2.057861	0.379077
7	6	0	-0.791364	0.628654	0.109986
8	6	0	-0.680156	2.096472	0.143034
9	6	0	0.554728	2.705187	0. 429251
10	1	0	1.417889	2.080891	0.632514
11	6	0	0.657321	4.092914	0. 453591
12	1	0	1.613197	4.559188	0.677067
13	6	0	-0.456414	4.899778	0.193595
14	1	0	-0.380596	5.982061	0.209873
15	6	0	-1.674684	4.283628	-0.086613
16	6	0	-1.805791	2.896039	-0.114142
17	1	0	-2.765825	2.441209	-0. 326532
18	6	0	-3.231941	-1.872543	-0.340036
19	6	0	-3. 472751	-2.909273	-1.249696
20	1	0	-2.652988	-3.292108	-1.848908
21	6	0	-4.761284	-3.427228	-1. 400494
22	1	0	-4.935653	-4.231265	-2.110936
23	6	0	-5.824324	-2.899130	-0.662882
24	1	0	-6.828313	-3. 295748	-0. 788884
25	6	0	-5.589774	-1.846059	0.226419
26	1	0	-6.411757	-1.420583	0.796808
27	6	0	-4.300724	-1.335423	0.391180
28	1	0	-4.118044	-0.508417	1.069825
29	6	0	-0.938738	-2.037866	0.725293
30	6	0	-0.870593	-3. 541925	0.446072
31	1	0	-1.829262	-4.014900	0.673365
32	1	0	-0.101380	-3. 990567	1.078694
33	1	0	-0.608200	-3.741770	-0. 595929
34	6	0	-1.324592	-1.791221	2.205496
35	1	0	-1.375288	-0.724074	2.443133
36	1	0	-0.583104	-2.253693	2.865021
37	1	0	-2.302424	-2.237983	2.413818
38	6	0	0. 400663	-1.378562	0. 438621
39	6	0	3. 769510	-2. 109704	0. 083337
40	1	0	3. 625391	-2.828887	-0.731771
41	1	0	3.863837	-2.661853	1.026032
42	6	0	4.965718	-1.228979	-0.162441
43	6	0	5.346976	-0.895338	-1.469324
44	1	0	4.778004	-1.288475	-2.309040

Structure Number: 3ae
SCF Energy at B3LYP/6-31+G(d) theoretical level: -1702.65437723 (Hartrees)

45	6	0	6.444562	-0.063107	-1.699901
46	1	0	6.730306	0.187132	-2.718460
47	6	0	7.174831	0.445423	-0.621480
48	1	0	8.030856	1.091536	-0.799215
49	6	0	6.802495	0.119213	0.685883
50	1	0	7.367200	0.511427	1.527907
51	6	0	5.703840	-0.713414	0.911513
52	1	0	5.413903	-0.965112	1.929434

Zero-point correction= 0.412874 (Hartree/Particle) 0.439153 Thermal correction to Energy= Thermal correction to Enthalpy= 0.440097 0.352236 Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= -1702.241503 Sum of electronic and thermal Energies= -1702. 215224 Sum of electronic and thermal Enthalpies= -1702.214280 Sum of electronic and thermal Free Energies= -1702.302142

Center	Atomic	Atomic	Coordinates (Angstroms)		stroms)
Number	Number	Туре	Х	Y	Z
1	17	0	-4. 484057	5. 157505	0. 199745
2	8	0	2.185975	-1.550673	2.295221
3	8	0	2.153553	0.040162	0.101178
4	7	0	-2.059439	-0.688687	0.470726
5	7	0	-1.773098	-1.940518	0.624826
6	7	0	1.033524	-0.837249	0.370126
7	6	0	-2.380408	0. 433149	0.451786
8	6	0	-2, 239573	1.820404	0. 143419
9	6	0	-0.982659	2. 276160	-0. 308386
10	1	0	-0.156021	1,577187	-0.416358
11	6	Û Û	-0.834578	3 633908	-0.586926
12	1	0	0.127081	4 006118	-0.927365
12	6	0	-1 906114	4 518899	-0.436784
10	1	0	-1 786409	5 574207	-0.6613/9
15	6	0	-3 1/3075	1 043326	0.010328
16	6	0	-3 325501	2 699530	0.315121
10	1	0	-4 281636	2.033050	0.674089
10	1	0	-9 124915	-2.774955	-0 512082
10	0	0	-2.134013 -1.516979	-2.114200	-0.013982 -1.752572
19	0	0	-1.010070	-2.00042	-1.752572
20	1	0	-0.737932	-1.030249	-1. 033104
21	0	0	-1.897273	-3. 392647	-2.825928
22	1	0	-1.421387	-3. 257084	-3. 793518
23	0	0	-2.875148	-4. 378377	-2.657130
24	1	0	-3. 163488	-5.006683	-3. 495775
25	6	0	-3. 482561	-4. 558228	-1. 410542
26	1	0	-4. 243693	-5. 322195	-1.277565
27	6	0	-3.117071	-3.749251	-0. 331615
28	1	0	-3. 584487	-3.868673	0.641454
29	6	0	-0. 052459	-2.320687	1.951303
30	6	0	0.268115	-3.815544	1.900557
31	1	0	-0.564100	-4.426707	2.268409
32	1	0	1.135627	-3.973859	2.546291
33	1	0	0.534103	-4.144307	0.892045
34	6	0	-0.472211	-1.904718	3.367413
35	1	0	-0.764055	-0.849269	3. 413256
36	1	0	0.386871	-2.032165	4. 029306
37	1	0	-1.306583	-2.519630	3.724481
38	6	0	1.210030	-1.487714	1.517406
39	6	0	3.238389	-0.670594	-0.505348
40	1	0	2.940591	-1.027023	-1.504055
41	1	0	3.487588	-1.537293	0.118935
42	6	0	4.416737	0.266950	-0. 597891
43	6	0	4.930814	0.677360	-1.833495

Structure Number: **TS2** SCF Energy at B3LYP/6-31+G(d) theoretical level: -1702.53557663 (Hartrees) Number of imaginary frequencies: -227.25*i* cm⁻¹

44	1	0	4.468317	0.318475	-2.751205
45	6	0	6.032418	1.538276	-1.900433
46	1	0	6.423868	1.843767	-2.868179
47	6	0	6.625002	2.004860	-0.724926
48	1	0	7.481299	2.673667	-0.772899
49	6	0	6.112563	1.605568	0.515776
50	1	0	6.571720	1.964556	1.434095
51	6	0	5.018073	0.742009	0.578747
52	1	0	4.613592	0.425838	1.537020

Zero-point correction= 0.4	05318 (Hartree/Particle)
Thermal correction to Energy= 0.4	34041
Thermal correction to Enthalpy= 0.4	34985
Thermal correction to Gibbs Free Energy= 0.3	39175
Sum of electronic and zero-point Energies=	-1702. 130259
Sum of electronic and thermal Energies=	-1702. 101536
Sum of electronic and thermal Enthalpies=	-1702. 100592
Sum of electronic and thermal Free Energies=	-1702. 196402

Center	Atomic	Atomic Atomic Cod		ordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	17	0	5. 677474	-3. 420209	-0. 355289	
2	8	0	-1.853164	1.401355	2.535885	
3	8	0	-1.746715	-0.658071	0.660299	
4	7	0	1.632512	1.158460	0.221771	
5	7	0	1.181778	2.370902	0.550051	
6	7	0	-0.917571	0.361709	0.627810	
7	6	0	1.932125	0.033482	0.162821	
8	6	0	2.333791	-1.314397	0.034307	
9	6	0	1.334592	-2.303504	0.050302	
10	1	0	0.266651	-2.018738	0.154894	
11	6	0	1.716897	-3.641795	-0.054274	
12	1	0	0.944038	-4. 427296	-0.034566	
13	6	0	3.059007	-3.991552	-0.180478	
14	1	0	3.349330	-5.051905	-0.263902	
15	6	0	4.043663	-2.992444	-0.199852	
16	6	0	3.692251	-1.647277	-0.089621	
17	1	0	4.464764	-0.862366	-0.099461	
18	6	0	0.813749	3.166420	-0.619465	
19	6	0	-0.229462	2.821710	-1.497256	
20	1	0	-0.832163	1.911222	-1.330957	
21	6	0	-0.516470	3.647869	-2.582763	
22	1	0	-1.337684	3.377136	-3.264418	
23	6	0	0.222155	4.808998	-2.803374	
24	1	0	-0.013772	5.458622	-3.659872	
25	6	0	1.261088	5.147704	-1.936335	
26	1	0	1.844290	6.064955	-2.107976	
27	6	0	1.571110	4.331954	-0.851008	
28	1	0	2.393067	4.612065	-0.173806	
29	6	0	0.145200	2.373883	1.672029	
30	6	0	-0.554653	3.733399	1.703401	
31	1	0	0.176471	4.566474	1.827392	
32	1	0	-1.256010	3.719210	2.577164	
33	1	0	-1.156412	3.899601	0.778363	
34	6	0	0.887362	2.168248	2.997949	
35	1	0	1.410281	1.183719	3.028919	
36	1	0	0.118321	2.178267	3.812119	
37	1	0	1.626951	2.982915	3. 180407	
38	6	0	-0.982155	1.272988	1.628122	
39	6	0	-3.171236	-0.368443	0.645805	
40	1	0 0	-3. 381176	0.573869	0.073780	
41	1	0 0	-3.491509	-0.222858	1.713450	
42	6	0 0	-3, 903111	-1.507402	0. 022273	
43	6	0 0	-5.298051	-1.418355	-0.090602	
	5	•	_ 00000 k	00000		

Structure Number: **Int2** SCF Energy at B3LYP/6-31+G(d) theoretical level: -1702.56121065 (Hartrees)

44	1	0	-5.816261	-0.523234	0.284379
45	6	0	-6.025067	-2.454673	-0.670782
46	1	0	-7.118511	-2.376694	-0.756060
47	6	0	-5.368549	-3.591667	-1.143523
48	1	0	-5.943297	-4.408300	-1.602261
49	6	0	-3.982594	-3.687198	-1.030729
50	1	0	-3.463051	-4.582702	-1.400152
51	6	0	-3.251991	-2.650157	-0.450850
52	1	0	-2.157284	-2.720935	-0.361000

Zero-point correction=	0.409287 (Hartree/Particle)
Thermal correction to Energy=	0. 436970
Thermal correction to Enthalpy=	0. 437915
Thermal correction to Gibbs Free Energy=	0. 346486
Sum of electronic and zero-point Energies=	$-1702.\ 151923$
Sum of electronic and thermal Energies=	-1702.124240
Sum of electronic and thermal Enthalpies=	-1702.123296
Sum of electronic and thermal Free Energies=	-1702.214724

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	17	0	0. 730207	5. 234874	-1. 146196
2	8	0	0.045052	-3.177817	0.070616
3	8	0	1.554386	-0.941667	-0.113003
4	7	0	-1.667033	0.431002	0.055553
5	7	0	-2.378433	-0.724991	-0.176681
6	7	0	0.242440	-0.918809	0.388486
7	6	0	-0.407800	0.337774	0.309463
8	6	0	0.370709	1.580737	0.519530
9	6	0	1.348516	1.618106	1.525327
10	1	0	1.491111	0.746427	2.155158
11	6	0	2.122032	2.763254	1.709767
12	1	0	2.872045	2.787529	2.495701
13	6	0	1.939050	3.888125	0.900421
14	1	0	2.533343	4.784904	1.041942
15	6	0	0.970264	3.836481	-0.101325
16	6	0	0.188576	2.701848	-0. 303066
17	1	0	-0.536482	2.685116	-1.108288
18	6	0	-3.782253	-0.458144	-0.367040
19	6	0	-4.457743	-1.077237	-1.424866
20	1	0	-3.910737	-1.734622	-2.093124
21	6	0	-5.818338	-0.833265	-1.627741
22	1	0	-6.332829	-1.319397	-2. 452679
23	6	0	-6.508509	0.047780	-0. 790896
24	1	0	-7.564564	0.244693	-0.955842
25	6	0	-5.827696	0.686705	0.250003
26	1	0	-6.352891	1.383543	0.898484
27	6	0	-4.471090	0.435505	0.464607
28	1	0	-3.934362	0.943943	1.259184
29	6	0	-1.975449	-1.919528	0.636411
30	6	0	-2.720922	-3.181395	0.197293
31	1	0	-3.788435	-3.091637	0.413664
32	1	0	-2.321714	-4.037729	0.746132
33	1	0	-2.584974	-3.376978	-0.869333
34	6	0	-2.181320	-1.686279	2.151520
35	1	0	-1.686811	-0.773991	2.498623
36	1	0	-1.775376	-2.533938	2.714900
37	1	0	-3.250318	-1.606100	2.375639
38	6	0	-0.478353	-2.102956	0.314314
39	6	0	2.494221	-1.569777	0.811930
40	1	0	2.122619	-2.567447	1.054259
41	1	0	2.559274	-0.965552	1.722965
42	6	0	3.816289	-1.631432	0.098701
43	6	0	4.061875	-2.650539	-0.833334
44	1	0	3.289757	-3.391016	-1.027833

Structure Number: **3ae'** SCF Energy at B3LYP/6-31+G(d) theoretical level: -1702.66345200 (Hartrees)

45	6	0	5.282169	-2.711512	-1.508059
46	1	0	5.463666	-3.505797	-2.227694
47	6	0	6.271171	-1.754921	-1.254861
48	1	0	7.223410	-1.804963	-1.777082
49	6	0	6.033849	-0.736253	-0.328111
50	1	0	6.799032	0.009373	-0.127787
51	6	0	4.809504	-0.674101	0.342645
52	1	0	4.624885	0.122395	1.060152

Zero-point correction=	0.412945 (Hartree/Particle)
Thermal correction to Energy=	0. 439168
Thermal correction to Enthalpy=	0.440112
Thermal correction to Gibbs Free Energy=	0.353241
Sum of electronic and zero-point Energies=	-1702.250507
Sum of electronic and thermal Energies=	-1702.224284
Sum of electronic and thermal Enthalpies=	-1702.223340
Sum of electronic and thermal Free Energies=	-1702. 310211

(2) The relative Gibbs free energy in solvent was calculated in a hexafluoroisopropanol solution. The energy data of all structures in solvent were obtained from the single point energy calculation at the CPCM-B3LYP/6-311+G(d,p) theoretical level and the thermal correction to Gibbs free energy calculated at the B3LYP/6-31+G(d) theoretical level. The Gibbs free energy of [4 + 5] was set to 0 kcal/mol as a reference.

levels (kcal/mol)					
Structures		Computational methods			
		B3LYP/6-31+G(d)	CPCM-B3LYP/6-311+G(d,p)// B3LYP/6-31+G(d) *		
Pathway 1	4 + 5	0	0		
	TS1	18.7	18.2		
	Int1	10.0	7.9		
	3ae	-41.6	-34.0		
Pathway 2	4 + 5	0	0		
	TS2	24.8	24.9		
	Int2	13.3	10.4		
	3ae2	-46.6	-41.6		

Figure S1 Energy profile for the two plausible reaction pathways obtained at the CPCM-B3LYP/6-311+G(d,p)//B3LYP/6-31+G(d) theoretical level.

8. References

(1) Jeffrey, C. S.; Barnes, K. L.; Eickhoff, J. A.; Carson, C. R. J. Am. Chem. Soc. 2011, 133, 7688.

(2) Ji, W.; Yao, L.; Liao, X. Org. Lett. 2016, 18, 628.

(3) Zhang, C.-Y.; Liu, X.-H.; Wang, B.-L.; Wang, S.-H.; Li, Z.-M. *Chemical Biology & Drug Design* **2010**, *75*, 489.

- (4) Wang, G.; Liu, X.; Huang, T.; Kuang, Y.; Lin, L.; Feng, X. Org. Lett. 2013, 15, 76.
- (5) Dadiboyena, S.; Valente, E. J.; Hamme, A. T. Tetrahedron Lett. 2009, 50, 291.
- (6) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
- (7) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- (8) Lee, C. T.; YANG, W. T. R.; PARR, G. Phys. Rev. B 1988, 37, 785.