Electronic Supplementary Information

ROMP-type epoxy-functionalized norbornene copolymer and its hybrid alkaline anion exchange membranes preparation and application

Xia ohui He,*^a Zhilong Han,^a Yingping Yang,^a Suli Wang,^a Guangshui Tu,^a Shengmei Huang,^{a,c} Feng Zhang,^a and Defu Chen^b

^aSchool of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
^bSchool of Civil Engineering and Architecture, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
^cSchool of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
Correspondence to: X. He (E-mail: hexiaohui@ncu.edu.cn)

Materials

N-Trimethoxysilylpropyl-N,N,N-Trimethylammonium chloride (TSPCA), glutaraldehyde (GA), 5-Norbornene-2-methanol, Sodium hydroxide (NaH), Grubbs's 1st catalyst $[Cl_2(PCy_3)_2Ru=CH-Ph]$ were used from Energy Chemical Co. Ltd. Epoxy chloropropane, 2-Bromobutane, Hydrochloric acid were provided by Tianjin Damao Chemical Co. Ltd. Tetrahydrofuran, Toluene, Hexane and Dichloromethane were distilled from sodium and benzophenone under nitrogen.

Characterization

¹H-NMR and ¹³C-NMR spectra were measured on a ARX600 Nuclear Resonnance Spectrograph by Bruker. Chloroform-d was used as solvent. The BN and MGENB monomer, copolymer and hybrid membrane were determined from the respective NMR spectra. TGA-7 Perkin Elmer thermal analyzer was used to check the identification of the thermal stability with a heating rate of 10 °C/min. MTS CMT8502 was used to describe the mechanical properties of the hybrid membranes. The gel permeation chromatography (GPC) was conducted with a Breeze Waters system equipped with a Rheodyne injector, a 1515 Isocratic pump, and a Waters 2414 differential refractometer by using polystyrenes as the standard and tetrahydrofuran (THF) as a solvent.

Fig. S1 GPC curves of ROMP-type epoxy-functionalized norbornene copolymers: (a) rP(BN/MGENB)-49.2, (b) rP(BN/MGENB)-37.3, (c) rP(BN/MGENB)-28.5, (d) rP(BN/MGENB)-21.3

Fig. S2 ¹H NMR spectrum of copolymer/silica hybrid membrane QrP(BN/MGENB-SiO₂-40)

Fig. S3 TGA curves of copolymer/silica hybrid membranes: (a) QrP(BN/MGENB-SiO₂-10), (b) QrP(BN/MGENB-SiO₂-20), (c) QrP(BN/MGENB-SiO₂-30), (d) QrP(BN/MGENB-SiO₂-40)

Fig. S4 Tensile curves of copolymer/silica hybrid membranes: (a) QrP(BN/MGENB-SiO₂-10), (b) QrP(BN/MGENB-SiO₂-20), (c) QrP(BN/MGENB-SiO₂-30), (d) QrP(BN/MGENB-SiO₂-40)

Table S1 The molecular weight and molecular distribution of ROMP-type epoxyfunctionalized norbornene copolymer

Sample	M _w (g/mol)	PDI
rP(BN/MGENB)-21.3	53146	1.69
rP(BN/MGENB)-28.5	49039	1.67
rP(BN/MGENB)-37.3	57303	1.66
rP(BN/MGENB)-49.2	64876	1.62

Mol% MGENB calculated by ¹H NMR.

Sample	THF	CHCl ₃	Toluene
rP(BN/MGENB)-21.3	+	+	+
rP(BN/MGENB)-28.5	+	+	+
rP(BN/MGENB)-37.3	+	+	+
rP(BN/MGENB)-49.2	+	+	+

Table S2 The solubility of the copolymer

+: soluble at room temperature

±: partially soluble at room temperature

-: insoluble at room temperature