Supporting Information

Regioselective Alkylation of Carbohydrates and Diols: A Cheaper Iron Catalyst, New Applications and Mechanism

Bo Ren*, Ningning Yan and Lu Gan

College of Chemistry & Chemical Engineering, Xinyang Normal University, Nanhu

Road 237, Xinyang, Henan, 464000, P. R. China

renbo@xynu.edu.cn

General: All commercially available starting materials and solvents were of reagent grade and used without further purification. Chemical reactions were monitored with thin-layer chromatography using precoated silica gel 60 (0.25 mm thickness) plates. ¹H NMR and ¹³C NMR spectra were recorded using a Bruker Avance 400 instrument or a Bruker DMX 500 instrument at 298K in CDCl₃, using the residual signals from CHCl₃ (¹H: δ = 7.25 ppm; ¹³C: δ = 77.2 ppm) as the internal standard. ¹H NMR peak assignments were made by first-order analysis of the spectra, supported by standard ¹H-¹H NMR correlation spectroscopy (COSY).

General method for regioselective alkylation of diols and polyols:

1. The substrates (50 mg) were allowed to react with RX (alkylation reagents) (1.1 eq.) in dry acetonitrile (1 mL) or a mixed solvent (MeCN/DMF: 10/1) at 40 °C for 2 - 3 h in the presence of Ag₂O (0.6 eq.), TBAB (0.1 eq.) and Fe(dipm)₃ (0.1 eq.). The reaction mixtures were filtered and directly purified by flash column chromatography (hexanes/EtOAc = 3:1 to 1:1) to afford the pure products.

2. Diol and polyol reactants (50 mg) were allowed to react with RX (alkylation reagents) (1.1eq.) in 1 mL of dry acetonitrile at 80 °C for 8 h, in the presence of $Fe(dipm)_3$ (0.1 eq.) and K_2CO_3 (1.5 eq.). After cooling and evaporating the solvent, the reaction mixture was directly purified by flash column chromatography (hexanes–EtOAc 3:1 to 1:1), affording the pure products.

Spectroscopic data of the known products were in accordance with those reported in the literature.

Methyl 3-*O*-(4-methoxybenzyl)-4,6-*O*-benzylidene-α-D-mannopyranoside (5). ¹H NMR (400 MHz, CDCl₃): δ 7.62 – 7.18 (m, 7H, PhCH, MeO-PhCH₂), 6.85 (d, J = 8.6 Hz, 2H, MeO-PhCH₂), 5.60 (s, 1H, PhCH), 4.77 (d, J = 11.4 Hz, 1H, MeO-PhCH₂), 4.72(s, 1H, H-1), 4.62 (d, J = 11.4 Hz, 1H, MeO-PhCH₂), 4.27 (dd, $J_1 = 3.9$ Hz, $J_2 = 9.6$ Hz, 1H, H-4), 4.07 (dd, $J_1 = 7.1$ Hz, $J_2 = 14.3$ Hz, 1H, H-6_a), 3.96 (s, 1H, H-2), 3.91–3.75 (m, 6H, H-3, H-5, H-6_b, MeO-PhCH₂), 3.36 (s, 3H, OMe), 2.83 (s, 3H, OME),

1H, 2-OH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ159.5, 137.7, 130.2, 129.7, 129.0, 128.3, 126.2, 113.9, 101.7, 101.2, 78.9, 75.4, 72.8, 69.9, 69.0, 63.3, 55.4, 55.0 ppm.

Methyl 3-*O*-(4-bromobenzyl)-4,6-*O*-benzylidene-α-D-mannopyranoside (6). ¹H NMR (400 MHz, CDCl₃): δ 7.55–7.32 (m, 7H, PhCH, Br-PhCH₂), 7.21 (d, J = 8.3Hz, 2H, Br-PhCH₂), 5.59 (s, 1H, PhCH), 4.82-4.70 (m, 2H, Br-PhCH₂, H-1), 4.66 (d, J = 12.2 Hz, 1H, Br-PhCH₂), 4.27 (dd, $J_1 = 4.1$ Hz, $J_2 = 9.6$ Hz, 1H, H-4), 4.08 (dd, $J_1 = 7.1$ Hz, $J_2 = 14.3$ Hz, 1H, H-6_a), 4.01 (s, 1H, H-2), 3.94–3.72 (m, 3H, H-3, H-5, H-6_b), 3.37 (s, 3H, OMe), 2.73 (s, 1H, 2-OH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 137.6, 137.1, 131.7, 129.6, 129.1, 128.4, 126.2, 121.9, 101.8, 101.2, 78.9, 75.7, 72.3, 70.0, 69.0, 63.3, 55.1 ppm.

Methyl 3-*O*-allyl-4,6-*O*-benzylidene-α-D-mannopyranoside (7). ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 7.7 Hz, 2H, PhCH), 7.44-7.30 (m, 3H, PhCH), 5.83-5.61(m, 1H, CH₂CH=CH₂), 5.59 (s, 1H, PhCH), 5.37-5.25 (m, 2H, CH₂CH=CH₂), 5.19 (d, J = 10.4 Hz, 1H, CH₂CH=CH₂), 4.78 (s, 1H, H-1), 4.39-4.23 (m, 2H, CH₂CH=CH₂, H-4), 4.20 (dd, $J_1 = 5.9$ Hz, $J_2 = 12.8$ Hz,1H, CH₂CH=CH₂), 4.12-4.00 (m, 2H, H-2, H-6_a), 3.91-3.75 (m, 3H, H-3, H-5, H-6_b), 3.39 (s, 3H, OMe), 2.77 (s, 1H, 2-OH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 137.7, 134.6, 129.0, 128.3, 126.2, 117.6, 101.7, 101.2, 78.9, 75.3, 72.0, 70.0, 69.0, 63.3, 55.1 ppm.

Methyl 3-*O*-(2-cyanobenzyl)-4,6-*O*-benzylidene-α-D-mannopyranoside (8). ¹H NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 7.6 Hz 1H, PhCH), 7.56-7.46 (m, 4H, CN-PhCH₂), 7.41-7.33 (m, 4H, PhCH), 5.61 (s, 1H, PhCH), 4.98 (d, J = 12.4 Hz, 1H, CN-PhCH₂), 4.92 (d, J = 12.4 Hz, 1H, CN-PhCH₂), 4.78 (s, 1H, H-1), 4.29 (dd, $J_1 = 4.3$ Hz, $J_2 = 9.8$ Hz, 1H, H-4), 4.23-4.13 (m, 2H, H-2, H-6_a), 3.97-3.77 (m, 3H, H-3, H-5, H-6_b), 3.39 (s, 3H, OMe), 2.90 (s, 1H, 2-OH) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 141.6, 137.6, 133.1, 132.9, 129.1, 128.3, 126.2, 117.8, 111.7, 101.7, 101.3, 78.8, 76.6, 71.0, 69.8, 69.0, 63.4, 55.1.

Methyl 3-*O*-allyl-6-*O*-(*tert*-butyldimethylsilyloxy)-*α*-D-mannopyranoside (10). ¹H NMR (400 MHz, CDCl₃): δ 6.10-5.88 (m, 1H, CH₂CH=CH₂), 5.32 (dd, $J_1 = 17.2$, $J_2 = 1.5$ Hz, 1H, CH₂CH=CH₂), 5.22 (dd, $J_1 = 10.4$, $J_2 = 1.1$ Hz, 1H, CH₂CH=CH₂), 4.74 (s, 1H, H-1), 4.23–4.11 (m, 2H, CH₂CH=CH₂), 3.97 (s, 1H, H-2), 3.93–3.79 (m, 3H, H-4, H-6_a, H-6_b), 3.67–3.52 (m, 2H, H-3, H-5), 3.37 (s, 3H, OMe), 3.06 (s, 1H, 4-OH), 2.42 (s, 1H, 2-OH), 0.90 (s, 9H, Si(CH₃)₃), 0.09 (s, 6H, Si(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 134.6, 118.0, 100.5, 79.0, 71.0, 70.8, 69.4, 67.9, 65.0, 55.0, 26.0, 18.4, -5.4 ppm.

Table S1 Comparison the isolation yields of alkylalation methods using catalytic amounts of $Fe(dibm)_3$ and $Fe(dipm)_3$.

Entry	Substrate	Major product	Yields	Yields
			(Fe(dibm) ₃)	(Fe(dipm) ₃)
1	Ph O OH HO OMe	Ph COLOH BNO OMe	96%	93%
2	Ph O OH HO OMe	Ph-CO-COH PMBO-COH OMe	96%	98%
3	Ph O OH HO OH HO OMe	Ph O OH Br-BnO OMe	98%	94%
4	Ph O OH HO OMe	Ph O OH Allylo OMe	98%	94%
5	Ph TO OH HO OMe	Ph O OH CN-BnO OMe	97%	85%
6			89%	91%
7	HO HO OH OMe	HO Bno OMe	91%	91%
8	HO HO HO OH OH OMe	HO Allylo OMe	75%	92%
9	HO HO OME	HO OTBS Bno HO OMe	87%	91%
10	HO OTBS HO HO OMe	HO OTBS BnO HO OMe	89%	94%

11	HO OH HO OH MO OMe	HO Bno OMe	86%	80%
12			83%	85%
13		HO OH BnO HO OMe	90%	90%
15	HO BNO BNO BNO OMe	HO BNO BNO OMe	98%	78%
16			91%	86%
17	НООН	HOOBn	94%	93%
18	HOOH Ph	HOOBn Ph	75%	75%
19	он он	OH OBn	80%	86%
20	НООН	HO	86%	90%
21	Ph O O O O O O O O O O O O O O O O O O O	Ph O O O O O O O O O O O O O O O O O O O	58%	64%

Figure S1 Recrystallized Fe(dipm)₃.

Figure S2 ¹H-NMR of **2,6-dimethyl-4-benzyl-3,5- heptadione (The product of BnBr and dibm)**

Methyl 3-*O***-benzyl-4, 6-***O***-benzylidene**-*α***-D-mannopyranoside (2)**¹**:** ¹H-NMR of compound **2** (CDCl₃)

Methyl 3-*O***-benzyl-6**-*O*-(*tert*-butyldimethylsilyloxy)-α-**D**-mannopyranoside (4)²: ¹H-NMR of compound 4 (CDCl₃)

Methyl 3-*O*-(4-methoxybenzyl)-4, 6-*O*-benzylidene-α-D-mannopyranoside (5)³: ¹H-NMR of compound 5 (CDCl₃)

¹³C-NMR of compound **5** (CDCl₃)

Methyl 3-*O***-(4-bromobenzyl)-4, 6-***O***-benzylidene**-*α***-D-mannopyranoside (6)**³**:** ¹H-NMR of compound **6** (CDCl₃)

Methyl 3-*O*-allyl-4, 6-*O*-benzylidene-α-D-mannopyranoside (7)³: ¹H-NMR of compound 7 (CDCl₃)

Methyl 3-*O*-(2-cyanobenzyl)-4, 6-*O*-benzylidene-α-D-mannopyranoside (8)³: ¹H-NMR of compound 8 (CDCl₃)

Methyl 3-*O*-(4-bromobenzyl)-6-*O*-(*tert*-butyldimethylsilyloxy)-α-Dmannopyranoside (9)⁴:

Methyl 3-*O*-allyl-6-*O*-(*tert*-butyldimethylsilyloxy)-*α*-D-mannopyranoside (10)³: ¹H-NMR of compound 10 (CDCl₃)

¹³C-NMR of compound **10** (CDCl₃)

Methyl 3-*O*-benzyl-6-*O*-(*tert*-butyldimethylsilyloxy)-β-D-galactopyranoside (12)⁴: ¹H-NMR of compound 12 (CDCl₃)

Methyl 3-*O*-benzyl-6-*O*-(*tert*-butyldimethylsilyloxy)-α-D-galactopyranoside (14)⁴: ¹H-NMR of compound 14 (CDCl₃)

Methyl 2, 3, 6-tri-*O***-benzyl-***β***-D-galactopyranoside (16)**⁵**:** ¹H-NMR of compound **16** (CDCl₃)

Methyl 3-*O*-benzyl-α-D-mannopyranoside (18)¹: ¹H-NMR of compound 18 (CDCl₃)

Methyl 3-*O*-benzyl-β-D-galactopyranoside (20)¹:

¹H-NMR of compound **20** (CDCl₃)

Methyl 3-*O*-benzyl-α-D-galactopyranoside (22)¹:

¹H-NMR of compound **22** (CDCl₃)

Methyl 2, 3, 6-tri-*O*-benzyl-α-D-glucopyranoside (26)⁶: ¹H-NMR of compound 26 (CDCl₃)

2-O-benzyl-1-Phenylethane-1, 2-diol (29)¹:

¹H-NMR of compound **29** (CDCl₃)

1-O-benzyl-1, 2-Propanediol (31)¹:

¹H-NMR of compound **31** (CDCl₃)

1-O-benzyl-1, 3-Butanediol (33)⁷:

¹H-NMR of compound **33** (CDCl₃)

1-O-benzyl-1.3-propanediol (35)8:

¹H-NMR of compound **35** (CDCl₃)

Reference

- 1. Xu, H.; Lu, Y.; Zhou, Y.; Ren, B.; Pei, Y.; Dong, H.;Pei, Z. Adv. Synth. Catal. **2014**, *356*, 1735.
- 2. Yang, G.; Kong, F.; Zhou, S. Carbohydr. Res. 1991, 211, 179.
- 3. Ren, B.; Ramstrom, O.; Zhang, Q.; Ge, J.; Dong, H. Chem. Eur. J. 2016, 22, 2481.
- 4. Chan, L.; Taylor, M. S. Org. Lett. 2011, 13, 3090.
- 5. Sakagami, M.; Hamana, H. Tetrahedron Lett. 2000, 41, 5547.
- 6. Eby, R.; Ehstlra, K.; Schuerch, C. Carbohydr. Res., 1984, 129, 111.
- 7. Lee, D.; Williamson, C. L.; Chan, L.; Taylor, M. S. J. Am. Chem. Soc. 2012, 134, 8260.
- 8. Zhou, X. T.; Carter, R. G. Chem. Commun. 2004, 19, 2138.