Supportting Information

Natural Sliced Wood Veneer as a Universal Porous Lightweight Substrate for Supercapacitor Electrode Materials

Shaoyi Lyu,^a* Yanping Chen,^{a,c} Shenjie Han,^a Limin Guo,^a Na Yang^a and Siqun Wang^{b,a}*

- ^a Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China.
 - ^b Center for Renewable Carbon, University of Tennessee, Knoxville, Tennessee, 37996, USA.

^c Beijing Engineering Research Center of Cellulose and Its Derivatives, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

*Author for correspondence. Email: lvsy@caf.ac.cn (S. Lyu), swang@utk.edu (S. Wang).

Fig. S1 (a-c) Surface morphology SEM images of natural wood at different scales. Surface morphology SEM images of (d) RGO wood, (e) PANI/RGO wood and (f) PPy/RGO wood at a small magnification. The inset of (d) shows an enlarged scale of RGO wood. (g–i) SEM/EDS image of the PPy/RGO wood. (h and i) Corresponding elemental mapping images of (h) N, and (i) C.

Fig. S2. (a) XPS wide-region scan spectrum of the PANI/RGO wood, PPy/RGO wood and RGO wood. High-resolution XPS N 1s spectrum of the (b) PANI/RGO wood and (c) PPy/RGO wood.

Fig. S3. CV curves of the (a) PANI/RGO wood, (a) PPy/RGO wood and (c) RGO wood electrodes at different sweep rates. GCD curves of (d) PANI/RGO wood, (e) PPy/RGO wood and (f) RGO wood electrodes at different current densities. (g) Nyquist plots of three wood electrodes. The electrochemical performances of three wood electrodes here were under three-electrode tests.

Fig. S4. (a) Nyquist plots of PANI/RGO wood and PPy/RGO wood electrodes assembled supercapacitor. (b) The enlarged scale of (a) at high frequency. CV curves of (c) PANI/RGO wood and (d) PPy/RGO wood electrodes assembled supercapacitor for cycling stability test.

Fig. S5. (a) The assembled all-solid-state supercapacitor device. (b) CV curve of the RGO wood electrode at a sweep rate of 5mVs⁻¹. (c) Dynamic mechanical properties of PANI/RGO, PPy/RGO and RGO wood electrodes.

Scaffolds	Active material	Current density	Specific capacitance	References
free- standing	graphene/polyanilin e	1 A g^{-1} (3-electrode) 1 A g^{-1} (2-electrode)	777 F g^{-1} (3-electrode) 665 F g^{-1} (2-electrode)	S1
free- standing	polyaniline/N-doped porous carbon	1 A g^{-1} (3-electrode)	755 F g ⁻¹ (3-electrode)	S2
free- standing	polyaniline/activated wood derived carbon	2 A g^{-1} (3-electrode)	$372 \text{ F g}^{-1}(3\text{-electrode})$	S3
cotton fabric	polypyrrole/reduced graphene oxide	$0.6 \text{ mA cm}^{-2}(3\text{-electrode})$	336 F g^{-1} (3-electrode)	S4
paper	graphite/polyaniline	0.5 mA cm^{-2} (3-electrode)	355.6 mF cm^{-2} (3-electrode)	S5
free- standing	carbon nanotube/polyaniline	1 mA cm ⁻² (3-electrode) 1 mA cm ⁻² (2-electrode)	680 mF cm ⁻² (3-electrode) 184.6 mF cm ⁻² (2-electrode)	S6
wood	polyaniline/reduced graphene oxide polypyrrole/reduced graphene oxide	$2.5 \text{ mA cm}^{-2}(3\text{-electrode})$ $0.50 \text{ mA cm}^{-2}(2\text{-electrode})$	931.92 F g^{-1} (3-electrode) 298.52 F g^{-1} (2-electrode) 848.01 F g^{-1} (3-electrode) 258.82 F g^{-1} (2-electrode)	This work

Tab. S1. The electrochemical performances of various electrodes.

Supplementary Reference

- S1. K. Li, J. Liu, Y. Huang, F. Bu and Y. Xu, J. Mater. Chem. A, 2017, 5. 5466-5474
- S2. S. N. Guo, H. K. Shen, Z. F. Tie, S. Zhu, P. H. Shi, J. C. Fan, Q. J. Xu and Y. L. Min, *J. Power Sources*, 2017, **359**. 285-294
- S3. D. Liu, S. Yu, Y. Shen, H. Chen, Z. Shen, S. Zhao, S. Fu, Y. Yu and B. Bao, Ind. Eng. Chem. Res., 2015, 54. 12570-12579
- S4. J. Xu, D. Wang, Y. Yuan, W. Wei, L. Duan, L. Wang, H. Bao and W. Xu, Org. Electron., 2015, 24, 153-159.
- S5. B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi, J. Zhou, J. Zhou, B. Hu and W. Chen, *Nano Energy*, 2013, 2, 1071-1078.
- S6. S. Zeng, H. Chen, F. Cai, Y. Kang, M. Chen and Q. Li, J. Mater. Chem. A, 2015, 3, 23864-23870.