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Fig. S1 (a-c) Surface morphology SEM images of natural wood at different scales. 

Surface morphology SEM images of (d) RGO wood, (e) PANI/RGO wood and (f) 

PPy/RGO wood at a small magnification. The inset of (d) shows an enlarged scale of 

RGO wood. (g–i) SEM/EDS image of the PPy/RGO wood. (h and i) Corresponding 

elemental mapping images of (h) N, and (i) C.
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Fig. S2.  (a) XPS wide-region scan spectrum of the PANI/RGO wood, 

PPy/RGO wood and RGO wood. High-resolution XPS N 1s spectrum of the (b) 

PANI/RGO wood and (c) PPy/RGO wood. 

Fig. S3.  CV curves of the (a) PANI/RGO wood, (a) PPy/RGO wood and (c) 

RGO wood electrodes at different sweep rates. GCD curves of (d) PANI/RGO 

wood, (e) PPy/RGO wood and (f) RGO wood electrodes at different current 

densities. (g) Nyquist plots of three wood electrodes. The electrochemical 

performances of three wood electrodes here were under three-electrode tests.
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Fig. S4.  (a) Nyquist plots of PANI/RGO wood and PPy/RGO wood electrodes 

assembled supercapacitor. (b) The enlarged scale of (a) at high frequency. CV 

curves of (c) PANI/RGO wood and (d) PPy/RGO wood electrodes assembled 

supercapacitor for cycling stability test.

Fig. S5.  (a) The assembled all-solid-state supercapacitor device. (b) CV curve 

of the RGO wood electrode at a sweep rate of 5mVs-1. (c) Dynamic mechanical 

properties of PANI/RGO, PPy/RGO and RGO wood electrodes.
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Tab. S1.   The electrochemical performances of various electrodes.

Scaffolds Active material Current density Specific capacitance References

free-
standing

graphene/polyanilin
e

1 A g−1 (3-electrode)
1 A g−1 (2-electrode)

777 F g−1(3-electrode)
665 F g−1(2-electrode)

S1

free-
standing

polyaniline/N-doped 
porous carbon 1 A g−1 (3-electrode) 755 F g−1(3-electrode) S2

free-
standing

polyaniline/activated 
wood derived carbon 2 A g−1 (3-electrode) 372 F g−1(3-electrode) S3

cotton 
fabric

polypyrrole/reduced 
graphene oxide 0.6 mA cm−2(3-electrode) 336 F g−1(3-electrode) S4

paper graphite/polyaniline 0.5 mA cm−2 (3-electrode) 355.6 mF cm−2 (3-electrode) S5

free-
standing

carbon 
nanotube/polyaniline

1 mA cm−2(3-electrode)
1 mA cm−2(2-electrode)

680 mF cm−2(3-electrode) 
184.6 mF cm−2(2-electrode)

S6

wood 

polyaniline/reduced 
graphene oxide

polypyrrole/reduced 
graphene oxide

2.5 mA cm−2(3-electrode)

0.50 mA cm−2(2-electrode)

931.92 F g−1(3-electrode)
298.52 F g−1(2-electrode)
848.01 F g−1(3-electrode)
258.82 F g−1(2-electrode)
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